
Nozicle Web Components

Page 1 of 6

Introduction
The Nozicle web components access scripts running on a web server. The scripts can be written
in any web scripting language although the scripts supplied are written in PHP.

The TNozicleDataset component is a TDataset descendant with NO dependency on the BDE. It
communicates with the scripts db_mysql.php and db_mysql_update.php for data access. As it is
a TDataset descendant, all data aware controls can be used, including quick reports.
TNozicleDataset allows you to run SQL against a database hosted on the web and return the
results as a dataset. Essentially it allows you to use a standard web server as a middle tier. The
only requirements of the server are that it is able to run PHP scripts and MySQL is installed. No
special server software or DLLs are required. Thus the webserver is platform independent. In
fact the demo databases hosted at www.nozicle.com/demodb are running on RedHat Linux using
Apache.

The TNozicleServerScript is used to pass arbitrary parameters to a script and receive the results.
The parameters are passed as an http ‘POST’. A stringlist is returned with the results.

Both TNozicleDataset and TNozicleServerScript access a web site via the
TNozicleWebConnection component. This component hold properties such as site URL, login,
password, proxy parameters etc.

Hosting Requirements
The complete requirements for a webserver hosting a database for access by the Nozicle Web
Components are:

1. Standard web server such as Apache (www.apache.org) or Microsoft iis (installed with
windows).

2. PHP (www.php.net). The PHP scripts are included in the distribution of the Nozicle
components. These can be rewritten in any other scripting language providing the output
is identical to the supplied scripts.

3. MySQL (www.mysql.com). The supplied PHP scripts assume access to MySQL. It is
reasonably straight forward to modify the scripts to access any other database
(Firebird/Interbase, Oracle, MS SQL Server etc).

Installation
1. Unzip the package to a directory.
2. Open the ‘DPK’ file in the ‘source’ directory for your version of Delphi (e.g

“Nozicle_WebAccess_D5.dpk” for Delphi 5).
3. Click on ‘Install’.

Nozicle Web Components

Page 2 of 6

TNozicleWebConnection

The TNozicleWebConnection component contains properties such as database name, login,
password etc. There is normally one TNozicleWebConnection per database. TNozicleDataSet
components connect to the database via the TNozicleWebConnection component in the same
way that Delphi TTable and TQuery connect to a database with the TDatabase componet.

Properties:

URL: string — The URL of the website where the PHP scripts are located, e.g.
www.yourcompanyname.com.

UserLogin: string — The user’s login name. Set the user table and fields in the script
‘user_vars.inc’. The use of UserLogin and UserPassword is optional, but you will need to edit the
PHP scripts if you decide not to use them.

UserPassword: string — The user’s password. See UserLogin above. The UserPassword is
not sent to the webserver with each request – it is used a a key to encrypt data.

SelectScriptName: string — Name and location of the of the PHP script for processing SQL
‘Select’ statements. Normally ‘db_mysql.php’. E.g. If the scripts are located in a directory
‘scripts’ off the web server root directory this would take the format ‘scripts/db_mysql.php’.

UpdateScriptName: string — Name and location of the PHP script for processing SQL ‘Update’
and ‘Insert’ statements. Normally ‘db_mysql_update.php’. See SelectScriptName above.

Compress: Boolean — Compress the dataset returned to the client after executing an SQL
‘Select’ statement. Normally ‘True’.

Key: string — Secret key used by the application to encrypt requests sent to the web server.
You need to ensure that the key is the same in the file ‘user_vars.inc’ on the web server.

ProxyServer: string — URL of your proxy server (if using a proxy server)

ProxyPort: integer — Port of proxy server (e.g. 8080)

ProxyUserName: string — User login name for your proxy server

ProxyPassword: string — User password for your proxy server

Nozicle Web Components

Page 3 of 6

TNozicleDataSet

TNozicleDataSet is a descendant of the Delphi TDataSet component, thus the usual methods of
TDataSet can be used with TNozicleDataSet (e.g. FieldByName, RecordCount, First, Next, Last,
Append, Edit, etc).

TNozicleDataSet has a property ‘DoSQL’. If this is ‘True’ the SQL statement in the ‘SQL’ property
will be executed on the server. If ‘False’ then an SQL statement is automatically constructed from
the ‘TableFields’, ‘TableName’, ‘RowOrder’ and ‘Filter’ properties. The statement constructed is
‘Select <TableFields> from <TableName> where <Filter> order by <RowOrder>’.

Properties:

SQL: string — A string containing the SQL to execute. The property ‘DoSQL’ must be ‘True’ for
this to be used.

Filter: string — Filter used when ‘DoSQL’ is set to ‘False’. This is the equivalent of the ‘Where’
clause in SQL.

TableName: string — Tablename when DoSQL is set to ‘False’.

RowOrder: string — Order of the fields when DoSQL is set to ‘False’.

TableFields: string — Fields to select when DoSQL is set to ‘False’. Normally ‘*’.

DoSQL: Boolean — ‘True’ if an SQL statement is used in the ‘SQL’ property (similar to Delphi
TQuery). ‘False’ if SQL is automatically constructed from ‘TableFields’, ‘TableName’, ‘RowOrder’
and ‘Filter’ (similar to Delphi TTable).

IndexField: string — Name of the field to use an primary index. This is a unique ID that is used
for SQL ‘update’ and ‘insert’ statements generated by the component when Append or Edit is
called. Use in conjunction with ‘GUIDIndex’. If IndexField is not set then the database will not be
able to be updated.

NozicleWebConnection: TNozicleWebConnection — Name of the TNozicleWebConnection
component to use. Can be on another Form or DataModule (the name of the Form or
DataModule unit must be in the ‘uses’ clause).

ErrorMessage: string — Error messages returned by the web server.

ErrorCode: integer — Error number of any error generated by the web server..

GUIDIndex: Boolean — ‘True’ if you want the system to automatically generate GUID’s for use
as Primary index ID’s. If ‘True’ the property ‘IndexField’ must be set. When a row is appended
(by calling Append) a GUID is automatically generated for the row.

DownloadTime: integer — Time in milliseconds that was taken between sending a request to the
web server and receiving the full dataset.

Nozicle Web Components

Page 4 of 6

TNozicleDataSet (cont)

DataSetSize: integer — Size in bytes of the raw data (i.e. compressed) received after
completing a SQL ‘Select’ statement.

DeleteKeyWord: string — SQL keyword used in SQL statements. Eg if DeleteKeyWord is
defined as __del__ then the SQL statement to use in the Dataset is ‘__del__ from user where
user_id = “1”’ which is interpreted as ‘delete from user where user_id = “1”’. The keyword is
configured on the server in the user_vars.inc script. The DeleteKeyword property is part of the
security (together with TNozicleWebConnection.Key and the username/password) as an outside
user must know the keyword, the application key and a username to run delete SQLs.

Methods:

PostToWeb:

Commits the data to the database. If the ‘Post’ method is called the row being edited or
appended is posted to memory. The changes are not saved to the database until the
‘PostToWeb’ method has been called. You can add or change as many rows in a dataset as
desired before calling ‘PostToWeb’. Thus a ‘PostToWeb’ call can update many rows in the
database with a single call.

Because data is accessed via a web server, the connection is stateless meaning that the
TNozicleDataSet is not permanently connected to the database. A new connection is made with
each ‘Select’ (i.e set Active := True) and with each update/insert (‘PostToWeb’) in the same way
that a web browser creates a new connection with the web server each time a page is requested.

Nozicle Web Components

Page 5 of 6

TNozicleServerScript

This component allows you to send data to a script on your web server and receive the response.
The script can be written in any language. The TNozicleServerScript sends parameters as a
HTTP ‘POST’. Examples of TNozicleServerScript in action are given in Tutorial 3:
TNozicleServerScript and email and Tutorial 4: TNozicleServerScript and SOAP (Web
Services). One of the uses of this component is to access Web Services (SOAP) without need
for installing specialised client software, components or libraries on the end users machine.

Properties:

Params: TStringList — Contains the parameters to pass to your web server script. These are
passed as a ‘POST’. The format is <param name>=<param value>.

ReturnMessage: string — The text that is returned from the script after execution. May contain
error messages if the script did not execute correctly.

ReturnInteger: integer — An optional numeric value that may be returned from your script.

SendAuthParams: Boolean — If TRUE then the user_name in the linked
TNozicleWebConnection is sent to the script. This would be used to authenticate the user.

ScriptName: string — The name of the script on the server, including the directory if the script is
located in a directory off the web server root directory. E.g. ‘scripts/email.php’ (note that there is
no leading ‘/’).

Methods:

Execute:

Executes the script. That is, send the POST to the script and receive the results.

Nozicle Web Components

Page 6 of 6

Appendix: Installation of Apache Web Server with PHP and MySQL.
Nozicle does not offer official support for Apache, PHP and MySQL, however the following
notes may be useful for installation in the Windows environment for development/testing
purposes. If you received the Nozicle Development Environment on a CD, Apache, PHP and
MySQL installation files will be on the CD.

Step 1: Download latest version of Apache from www.apache.org.
Step 2: Install Apache, following the installation Wizard.
Step 3: Test to see if the installation was successful by starting your browser and entering

The URL ‘http://localhost’.
Step 4: Download latest version of PHP from www.php.net.
Step 5: PHP is normally downloaded as a zip file. Extract the contents to c:\php.
Step 6: Copy php.ini to c:\windows.
Step 7: Edit c:\windows\php.ini: extension_dir = c:\php\extensions.
Step 8: Edit c:\windows\php.ini: uncomment ‘extension=php_zlib.dll’.
Step 9: Copy contents of c:\php\dlls to c:\windows\system32.
Step 10: Copy c:\php\php4ts.dll to c:\windows\system32.
Step 11: Edit Apache configuration file c:\program files\apache\cont\httpd.conf:

Add line LoadModule php4_module c:/php/sapi/php4apache.dll at end of
‘LoadModule’ section.
Add line AddModule mod_php4.c at end of ‘AddModule’ section.
Add line AddType application/x-httpd-php .php .phtml .php3 in ‘AddType’
module.
Note: There are no explicit ‘LoadModule’, ‘AddModule’ or ‘AddType’ sections in the
configuration file, however most of these statements appear together in the same
section of the file.

Step 12: Restart the Apache service. Select services from Start →→→→ Settings →→→→ Control
Panel →→→→ Administrative Tools. Stop then Start (or restart) the service ‘Apache’.

Step 13: Check the PHP installation by creating the following file:
<html><body>
<? phpinfo(); ?>
</body></html>
save as test1.php in c:\program files\apache\htdocs. Run using your web
browser
with the URL http://localhost/test1.php. You should see detailed information
about your system.

Step 14: Download latest version of MySQL from www.mysql.com. Install to directory
c:\mysql.

Step 15: Install MySQL as an NT service: Open a command prompt window
(Start →→→→ Run, enter cmd then click Ok).
Type cd c:\mysql\bin
Type mysqld-nt --install

Step 16: Optional: Change the MySQL root password:
Type mysqladmin –u root password <new-password>

