The Graphics32 Library

Delphi Classes, Components and Functions for Fast 32-bit Graphics Programming
Version 0.97
April 29, 2000

Alex Denissov

Copyright © 2000 by Alex A. Denissov

All rights reserved

OVeIVIEW ... i ittt et et s
LiceNSevi it i e e
Installation...............cciiiiiiiiiii i,
Introduction.coiiiii i e
Color Types. ...ovvvii it nes
ColorFunctionscooviiiiiiiiinnnnn,

Color Construction and Conversion
Color32 .o
Gray32 . .o
WinColor
HSLtoRGB
RGBtoHSL

Color Component Access. ...,
RedComponent.
GreenComponent
BlueComponent i
AlphaComponent
Intensity.
SetAlpha.

ColorBlending ...
Blend
BlendExo
Combine. e
ColorAdd
ColorSub
ColorModulate i
ColorMax . ..o v
ColorMin

Opacity Correction for Antialiasing................
SetGamma

TThreadPersistentccvvviiviivenns

Properties
LockCount
UpdateCount

Methods i
BeginUpdate.
Changed.
Changingo
EndUpdate.
LOCK . oo

Empty ..o
SetSize.

TBitmap32........cciiiiiiiii e

Properties
Bits . .

Height

MasterAlpha 10
OuterColor. i 10
Pixel .o 11
PixelPtr. ... 11
ScanLine. 11
StretchFilter 11
Width ... 11
Methods.c i 11
BeginUpdate 11
Changed 12
Changing. 12
Clear. .. 12
Delete i 12
Draw . o 12
DrawTo . . 12
DrawHorzline e 13
Drawline. 13
DrawVertLine. 14
EndUpdate 14
Empty . ..o 14
FillRect . . . o 14
FrameRect. 15
LoadFromFile 15
LoadFromStream. e 15
LocK .o e 15
RaiseRectTS 15
ResetAlpha 15
SetPixel. 15
SaveToFile.o 16
SaveToStream. 16
SetSize 16
TextOut. ... 16
TextExtent. 16
TextHeight. 17
TextWidth 17
UnlocK. . .o 17
UpdateFont. 17
Events 17
OnChanget 17
OnChanging. oo 17
LinePatterns i, 17
SetStippleo 18
ResetStippleCounter 18
SetStippleStep 18
GetStippleColor. 18
TPaNtBox32. ...ttt 19
Propertiesl 19
Buffer 19
Methods.c i 19
BeginUpdate 19
ClearBuffer i 19
Changed 19
Changing. 19
EndUpdate 19
Events 20
OnCleanBuffer. 20
OnChanging. oo 20
OnChangeo 20
OnPaint. 20
OnResizZe. . ..o i 20
TImage3d2 ... 21
Propertiesol 21

AUtoSizZe. . . 21

Bitmap. 21
BitmapAlign 21
GetPictureRect. 22
Scale ... 22
ScaleMode 22
Methodsc 22
BeginUpdate. 22
EndUpdate. 22
SetupBitmap 22
TLayer32 ...ttt 23
Methodscc i 23
Changed. 23
Changing o 23
Events. ... 23
OnChange. . . .o 23
OnChanging oo 23
OnPaint 23
TBitmapLayer32ccoiiiiiiinnnnnnns 23
Properties . . .oovv i 24
AutoSize. 24
Bitmap. 24
TBitmapList32............ccoiiiiiiiinns 2
TByteMap. ..o 25
Properties . . .oovv i 25
Bytes 25
Height 25
ValPtr. .o 25

Width 25
Methods.c i 25
Empty . ..o 25
Clear. 25
ReadFrom 25
SetSize 25
WriteTo o 26
Transformations 27
BlockTransfer., 27
StretchTransfer 27
Transform 28
TLinearTransformation 28
Matrix 29
GetTransformedBounds. 29
PrepareTransform. 29
Transform 29
Clear. e 29
Rotate. 29
SKeW . . 29
Scale. ... 29
Translate. 30
Filterscovviiiiiii e e 30
AlphaToGrayScaleo 30
IntensityToAlpha 30
Invert e 30
INnVertRGB 30
ColorToGrayscale, 30
ApplyLUT 30
Finalization................. oo, 30

Overview

Overview

License

Installation

ALEX DENISSOV

page 1

Graphics32 is a set of classes, components and functions designed for Delphi 5. It allows
for fast graphics programming using 32-bit DIBs. Being highly specialized for 32-bit pixel
format, it provides fast operations with pixels and graphic primitives and in most cases
Graphics32 considerably outperforms the TCanvas class.

Some of its features include:

« Fast per-pixel access;

« Bitmap alpha blending (including per-pixel alpha blending);

+ Pixel and line antialiasing (combined with alpha blending);

+ Locking the bitmap for safe multithreading;

+ Enhanced scaling of bitmaps;

+ Linear transformations of bitmaps: rotations, scaling, etc with sub-pixel accuracy;
* Flicker-free image displaying component with optimized double buffering;

* Multiple customizible easy to use overlay layers;

+ A property editor for RGB and alpha channel loading;

- Design-time loading of image formats supported by standard TPicture;

Graphics32 comes with a full source code and examples. The latest version of Graphics32
may be found on the web site http://www.geocities.com/den_alex

This notice may not be removed from or altered in any source distribution.

Graphics32 if distributed as a freeware. You are free to use Graphics32 as part of your
application for any purpose including freeware, commercial and shareware applications,
provided some credit is given.

This software is provided 'as-is', without warranty of any kind, either expressed or
implied. In no event shall the author be held liable for any damages arising from the use
of this software.

Delphi 5 is required in order to install Graphics32 library.

+ Unzip the files.

+ Select File | Open... on the menu bar. Set Files of type to Delphi package source,
locate and select the G32.dpk file, and click Open.

» Check the necessary file paths in Tools | Environment Options | Library | Library Path.
They should include G32 directory as well as $(DELPHI)\Source\Toolsapi and
$(DELPHI)\Source\Vcl.

« A package editor window will appear. Click Compile, then click Install.

VERSION 0.97 — APRIL 29, 2000

http://www.geocities.com/den_alex

Introduction

Introduction

ALEX DENISSOV

page 2

Many features in Graphics32 are similar to those found in standard TImage, TBitmap and
TCanvas classes, however they were rewritten to accelerate and optimize drawing on 32-
bit DIBs.

The current version includes the folloing units:

« Graphics32.pas — basic classes, defines and implements TBitmap32 class;

* Image32.pas — VCL wrappers (TImage32, TLayer32, etc.);

» Blend32.pas - color mixing, blending, multiplying, adding, etc..;

+ ByteMaps.pas — multi-purpose 2D byte arrays;

» Transform32.pas — Scaling, linear transformations, etc.;

- Filter32.pas — Image processing engine and filters (this is not finished yet);

» Graphics32Reg — design time classes and property/component editors;

» LowLevel32 — some low level routines, mainly in-line assembler code.

Except the extended features, Graphics32 has some important differences from standard
TBitmap, TImage and other components. It does not rely on Windows GDI, most of the
functions are reimplemented and optimized specifically for 32-bit pixel format. The major
exception is BitBlt function, which is used to copy the portions of images in opaque mode.
| left it since there is a good chance that graphic driver will use hardware acceleration for
bitmap blitting, this might be changed in future versions. Another use of GDI functions is

to transfer images to/from other Windows objects (screen, printer, non 32-bit bitmaps,
device-dependant bitmaps etc).

This documentation includes the following topics:

Color Types;

Color Functions;
TThreadPersistent;
TCustomMap;
TBitmap32;
TPaintBox32;
TImage32;
TLayer32 and TBitmapLayer32;
TBitmapList32;
TByteMap;
Transformations;
Filters.

VERSION 0.97 — APRIL 29, 2000

Color Types

Color Types

Note: TColor32 has its own
property editor, which is capa-
ble of displaying semi-trans-
parent colors.

Color Functions

Color32

Gray32

WinColor

ALEX DENISSOV

page 3

Color types are defined in Graphics32.pas as follows:

TColor32 = type Longword;

PColor32 = ~TColor32;

TColor32Array = array [0..0] of TColor32;
PColor32Array = ~TColor32Array;
TArrayOfColor32 = array of TColor32;
TPalette32 = array [Byte] of TColor32;
PPalette32 = ~TPalette32;

TColor32 represents an ARGB color quad with color components in the following order:

Bits 31...24 Bits 23...16 Bits 15...8 Bits 7...0

A R G B

This order is different from ABGR pixel format used by most Windows API functions and
implemented in Delphi as TColor type. Several functions are provided to convert colors
between different standards (See "Color Construction and Conversion” on page 3).

The alpha channel is responsible for pixel’s opacity: zero value corresponds to complete
transparency, and the value of 255 corresponds to completely opaque pixels.

Color constants are similar to standard ones: c/Black32, cIlWhite32, etc. Do not use
TColor-typed values with Graphics32 directly, use provided conversion functions, e.g.:

Bitmap32.SetPixel(10, 10, Color32(clBtnFace));

Do not confuse PColor32Array and TArrayOfColor32 types while the first holds the pointer
to a memory location, the second is a fully functional dynamic array.

TPalette32 types are mostly used to simulate palette-based operations.

This section describes color handling functions, that allow construct colors as well as
convert between different color formats. These functions are implemented in
Graphics32.pas unit and in Blend32.pas unit.

Color Construction and Conversion

function Color32(R, G, B: Byte; A: Byte = $FF): TColor32; overload;
This function combines its arguments into a 4-byte TColor32.
function Color32(WinColor: TColor): TColor32; overload;

The pixel format of 32-bit DIBs (ARGB) is different from that used in standard TColor type
(ABGR). Some standard windows colors are coded using special constants which should
be converted into RGB form. This function provides conversion of TColor into TColor32.

function Color32(Index: Byte; Palette: PPalette32): TColor32; overload;
type PPalette32 = ~TPalette32;
type TPalette32 = array [0..255] of TColor32;

This function simply picks the color value from the palette.

SEe ALso: “Color Types”.

function Gray32(Intensity: Byte; Alpha: Byte): TColor32;

The action of Gray32(I, A) is the same as Color32(1, I, I, A). It just works faster.
SEE ALso: Color32.

function WinColor(Color32: TColor32): TColor;

Provides conversion of the TColor32 value back into TColor. The highest-order byte (Alpha
channel) of resulting color is assigned the $FF value.

VERSION 0.97 — APRIL 29, 2000

Color Functions

HSLtoRGB

RGBtoHSL

RedComponent

GreenComponent

BlueComponent

AlphaComponent

ALEX DENISSOV

Intensity

SetAlpha

Blend

BlendEx

page 4

function HSLtoRGB(H, S, L: Single): TColor32;

Conversion from HSL color space. Each argument should normally be in 0...1 range,
although the H value is automatically wrapped.

procedure RGBtoHSL(RGB: TColor32; var H, S, L : Single);

Conversion from RGB into HSL color space. The H, S and L components are returned in
corresponding var parameters ranging from O to 1.

Color Component Access

function RedComponent(Color32: TColor32): Integer;
function GreenComponent(Color32: TColor32): Integer;
function BlueComponent(Color32: TColor32): Integer;

function AlphaComponent(Color32: TColor32): Integer;
These functions return the value of the corresponding color component ranging from 0 to 255.

function Intensity(Color32: TColor32): Integer;
Returns the weighted intensity of the color, which is calculated as
I=R*0.21 + G *0.71 +B * 0.08;

function SetAlpha(Color32: TColor32; NewAlpha: Integer): TColor32;

Returns a color with the new alpha channel.

Color Blending

The following functions are defined in Blend32.pas. In previous versions they were MMX
optimized, the current version implements a version of non-MMX color blending that is
just as fast as MMX version (well, maybe 5-79%, slower, but this is not critical).

Color blending and combining functions come in two versions each. The ones with ‘Reg’
postfix take parameters and produce the result operating on CPU registers, while ‘Mem’
versions operate with the background color referenced by a memory address. Using
‘Mem’ functions is more efficient when blending/combining data to a bitmap since it
excludes writing operation for transparent pixels.

The color blending functions (Blend and BlendEx) ignore the background alpha and the
alpha of the result is not specified.

function BlendReg(F, B: TColor32): TColor32;
procedure BlendMem(F: TColor32; var B: TColor32);

Mixes a foregrownd (F) color with the background color (B) using alpha of the foreground
color.

Srea = Fa * Frgg + (1 — Fa) * Braa:

function BlendRegEx(F, B, M: TColor32): TColor32;
procedure BlendMemEx(F: TColor32; var B: TColor32; M: TColor32);

Mixes a foregrownd color with the background color using alpha of the foreground color
scaled with master alpha value M.

Sk = (M * Fpa) * Fpgp + (1 = (M * Fp)) * Brgg:

M is defined as TColor32 do avoid unnecessary type conversions, it should store only the
value in [0..255] range, the function does not perform range checking and the result in
case M > 255 is not specified.

VERSION 0.97 — APRIL 29, 2000

Color Functions

ALEX DENISSOV

Combine

ColorAdd

ColorSub

ColorModulate

ColorMax

ColorMin

SetGamma

page 5

function Combine(X, Y, W: TColor32): TColor32;
procedure Combine(F: TColor32; var B: TColor32; W: TColor32)

Returns the linear interpolation between two colors. The W parameter [0..255] specifies
the weight of the first color. The alpha channel is interpolated as well.

Sreea = W * Xpepa + (1 — W) * Yrapar
function ColorAdd(C1, C2: TColor32): TColor32;

Returns the sum of two colors. Each color component: red, green, blue and alpha is
added separately and summation results are clamped to fit into [0...255] range.

function ColorSub(C1, C2: TColor32): TColor32;

Subtracts C2 from C1. The resulting color components are clamped to [0...255] range.
This involves the alpha channel subtraction.

function ColorModulate(C1, C2: TColor32): TColor32;

The resulting color is the product of C1 and C2 divided by $FF:
Crep = Clrgp * C2raai

function ColorMax(C1, C2: TColor32): TColor32;

Returns the maximum of CI and C2.
function ColorMin(C1, C2: TColor32): TColor32;
Returns the minimum of C1 and C2.

Opacity Correction for Antialiasing

Pixel and line antialiasing produces much better results with the correction of opacities of
partially covered pixels. This partially accounts for monitor gamma and, in part, for pixel
shape correction. This is a simplified approach to antialiasing problem, but it works in
most cases. The SetGamma procedure generates a lookup table for opacity correction:

procedure SetGamma(Gamma: Single = 0.7);

The default value of 0.7 is fine in most cases, but it may require some changes.

VERSION 0.97 — APRIL 29, 2000

TThreadPersistent

TThreadPersistent

page 6

ALEX DENISSOV

LockCount

UpdateCount

BeginUpdate

Changed

Changing

EndUpdate

Lock

TThreadPersistent extends standard TPersistent class with thread-safe locking and
declares change notification events. Locking is provided to syncronize simultaneous
access in applications with multiple thread and it works similar to that in TCanvas class.
For additional information, see also Delphi documentation on TCanvas.

The class declares change notification abilities. That is, it provides methods and events
allowing it descendants to issue notification on their changes. For example, TBitmap32
uses OnChange to notify its container (usually TImage32 or TByteMap) that it was modi-
fied and its data should be repainted. TThreadPersistent, however, does not implement
automatic change notification. It is done in descendants.

Properties

property LockCount: Integer; // read-only; protected;

Shows the current nesting level of the thread lock. TThreadPersistent is unlocked only
when LockCount is 0. Only one thread may lock the object at the time.

SEE ALso: Lock, Unlock.

property UpdateCount: Integer; // read-only; protected;

The current nesting level of the update block. It is increased each time you call the Begin-
Update method and is decremented with EndUpdate calls. The object does not generate
OnChanging and OnChange events as long as its UpdateCount is greater than O.

SEE ALso: BeginUpdate, EndUpdate, OnChanging, OnChange.
Methods

procedure BeginUpdate;

Increases the UpdateCount property and disables the generation of OnChange events.
Calls to BeginUpdate method must be paired with EndUpdate calls and they may be safely
nested.

SEE ALso: UpdateCount.

procedure Changed; virtual;

Calls the OnChange event. Descendants of TThreadPersistent call Changing after making
changes to their data or properties.

SEE ALso: Changing, OnChange.

procedure Changing; virtual;

Calls the OnChanging event. Descendants of TThreadPersistent call Changing before mak-
ing changes to their data or properties.

SEE ALso: Changed, OnChanging.

procedure EndUpdate;

Decreases the UpdateCount property and enables the generation of OnChange events if
UpdateCount reaches 0.

SEE ALSO:

procedure Lock;

Blocks other execution threads from locking the bitmap until the Unlock method is called.
If another thread is trying to call a Lock method of an object which is already locked, its
execution is stalled until the lock is released with Unlock method.

VERSION 0.97 — APRIL 29, 2000

TThreadPersistent

ALEX DENISSOV

Unlock

OnChange

OnChanging

page 7

Once a thread has locked the object, it can make additional calls to Lock method without
blocking its own execution. This prevents the thread from deadlocking itself while waiting
for releasing of a lock that it already owns.

The LockCount property is increased each time the Lock method is called.

SEE ALs0: Unlock, LockCount.

procedure Unlock;

Decreases the LockCount property allowing other threads to access the object when Lock-
Count reaches 0. The thread must call Unlock once for each time that it locked the object.

SEE ALso: Lock, LockCount.

property OnChange: TNotifyEvent;

Occurs immediately after the object changes. For example, the TThreadPersistent’s
descendant TBitmap32, uses OnChange event to notify its parent that something was
changed in a bitmap, and the screen image must be updated.

property OnChanging: TNotifyEvent;

Occurs before the changes are made to the object. This event, for example, may be used
to implement ‘undo’ buffers in your application.

VERSION 0.97 — APRIL 29, 2000

TCustomMap

TCustomMap

ALEX DENISSOV

Height

Width

Delete

Empty

SetSize

page 8

TCustomMap is a direct descendant of TThreadPersistent. It serves as a common ancestor
for objects that hold 2D data arrays (TBitmap32, TByteMap).

SEE ALso: "TBitmap32” on page 9, "TByteMap” on page 25.

Properties

property Height: Integer;

Defines the height of the contained data array. Writing into the Height property will resize
the data array. The exact behavior is defined in descendants. Use SetSize methos to
change both width and height simultaneously.

SEE ALso: Width, SetSize.

property Width: Integer;

Defines the width of the contained data array. Writing into the Width property will resize
the data array.

SEE ALso: Height, SetSize.

Methods

procedure Delete; virtual;

function Empty: Boolean; virtual;

Returns true if data set is empty. Usually it means that either its width or its height is O.
Note that even if one of the dimensions is non-zero the bitmap may be

procedure SetSize(NewWidth, NewHeight: Integer): overload; virtual;
procedure SetSize(Source: TPersistent): overload; virtual;

Simultaneously changes both width and height of data. The second overloaded version
‘knows’ how to get the size from the following objects or their descendants: TCustomMap,
TGraphic, TControl and nil. When another parameter is specified TCustomMap generates
exception.

VERSION 0.97 — APRIL 29, 2000

TBitmap32

TBitmap32

Note: References to third-
party image import/export
libraries may be obtained from
my web site.

Bits

ALEX DENISSOV

page 9

TBitmap32 is the most important class in the Graphics32 library. It manages a single
32-bit device-independent bitmap (DIB) and provides methods for drawing on it and com-
bining it with other DIBs or other objects with the device context (DC).

TBitmap32 is a descendant of the TCustomMap class. It overrides the Assign and AssignTo
methods (inherited from TPersistent) to provide compatibility with standard objects: TBit-
map, TPicture, TClipboard in both directions. The design-time streaming to and from
*.dfm files, inherited from TPersistent, is supported, but its realization is different from
streaming with other stream types (See the source code for details).

TBitmap32 does not implement its own low-level streaming or low-level file loading/sav-
ing. Instead, it uses streaming methods of temporal TBitmap or TPicture object. This is an
obvious performance penalty, however such approach allows using third-party libraries,
which extend TGraphic class for various image formats support (JPEG, TGA, TIFF, GIF,
PNG, etc.). When you install them, TBitmap32 will automatically obtain support for new
image file formats in design time and in run time.

Since TBitmap32 is a descendant of TThreadPersistent, it inherits its locking mechanism
and it may be safely used in multi-threaded applications.

TBitmap32 has several properties and methods which have similar action but may have
different arguments or other realization details. They follow the simple naming conven-
tion:

Postfix Details Example
Property or method does not perform range checking of its arguments.
All the coordinates should be valid.

‘Safe’ version. Validates coordinates. If necessary, clipping of lines etc.
is performed.

‘Transparent’ version of the method. Uses the alpha channel of the pro-
T vided color to blend the drawn primitive with the background pixels. DrawLineT
Does not validate coordinates.

‘Pattern’ version. Usually combined with TS or FS postfix, it may be

none DrawLine

S DrawlLineS

P used to implement various effects like gradient or dashed lines. DrawlineFSP

TS Combines both transparency and coordinates validation. DrawLineTS
Methods with ‘F’ postfix take the coordinates as floating point argu-

F ments and provide the antialiasing of the drawn primitive. Does not vali- DrawLineF
date coordinates.

Fs .Safe version of antialiased methods which performs range checking on DrawLineFS
its arguments.

Properties

property Bits: PColor32Array; // read-only
type PColor32Array = ~TColor32Arra;
type TColor32Array = array[0..0] of TColor32;

The bits property contains the address of the first (topmost, leftmost) pixel in a bitmap. If
the bitmap is not allocated (has zero width or zero height), the returned address is nil.
Data is continuously allocated in memory, row by row. You may safely access Width *
Height elements, each of them is a 4-byte TColor32 value. For example:

var
P: PColor32Array;
begin
P := Bitmap32.Bits;
for I := 0 to Bitmap32.Width * Bitmap32.Height - 1 do
P[I] := Gray32(Random(255)); // fill the bitmap with a random grayscale noise
end;

Note that in this code there is no size verification required, if width or height is zero, their
product is zero and the loop will never be executed.

SEE ALso: PixelPtr, ScanLine.

VERSION 0.97 — APRIL 29, 2000

TBitmap32

ALEX DENISSOV

DrawMode

Font

Handle

Height

MasterAlpha

OuterColor

page 10

property DrawMode: TDrawMode;
type TDrawMode = (dmOpaque, dmBlend);

Specifies how the bitmap should be combined with a background during pixel transfer
and similar operations. In dmOpaque mode, new pixels replace the background pixels, in
dmBlend mode, they are combined using the alpha blending operation. This property is
used while copying one bitmap into another, scaling, performing linear transformations
etc.

The blending in dmBlend mode, is performed using Blend or BlendEx functions from the
Blend32.pas unit.

SEE ALso: "Blend” on page 4.

property Font: TFont32;

Specifies a current font used by text output functions. TFont32 is derived from TFont and
additionally contains an integer Escapement property, which specifies the angle, in tenths
of degrees, between each character's base line and the x-axis of the device.

SEE ALso: Updatefont.

property Handle: HDC; // read-only

Provides the device handle of the contained DIB. This handle may be used in low-level
Windows API calls or, for example, to attach a TCanvas object to TBitmap32:

var
Canvas: TCanvas;
begin
Canvas := TCanvas.Create; // create a new independent TCanvas object
try
Canvas.Handle := Bitmap32.Handle; // attach it to the Bitmap32 object
Canvas.Pen.Color := clRed; // use standard TCanvas methods for drawing

Canvas.Brush.Color := clGreen;
Canvas.Ellipse(10, 10, 60, 40);
finally
Canvas.Free;
end;
end;

Handle contains zero, if the bitmap is empty (width or height is zero), and its value may
be changed after resizing.

property Height: Integer; override;

Specifies the height of the bitmap in pixels. Height is inherited from TCustomMap.

SEE ALso: Width, SetSize.

property MasterAlpha: Byte;

When blending a bitmap to the screen or to another bitmap, MasterAlpha controls the
blending factor. The per-pixel opacity stored in the blended bitmap is premultiplied with
MasterAlpha. If the MasterAlpha property is $00, the bitmap will be fully transparent, if it
is equal to $FF, only per-pixel opacity, stored in bitmap’s alpha channel is used. This
property is usen only when DrawMode = dmBlend and only for bitmap blending, it does
not affect pixel/line drawing and other similar routines.

SEE ALs0: DrawMode.

property OuterColor: TColor32;

This property specifies the color returned by PixelS property when reading the pixel with
coordinates that lie outside of the bitmap. The default value is $00000000 which corre-
sponds to a fully transparent black. It is also used (in the current version) when perform-
ing linear transformations of a bitmap.

SEE ALSO: Pixel.

VERSION 0.97 — APRIL 29, 2000

TBitmap32

ALEX DENISSOV

Pixel

PixelPtr

ScanLine

StretchFilter

Width

BeginUpdate

page 11

property Pixel[X, Y: Integer]: TColor32; default;

property PixelS[X, Y: Integer]: TColor32;

Pixel property sets the value of the pixel in the bitmap. Reading it, will return the color
value of the pixel located at specified coordinates. This property does not validate the
specified coordinates, so use it only then you are completely sure that you are not trying
to read from or write to the outside of the bitmap boundary. Pixel is declared as default
property, you may use it as shown below:

Bitmap32[10, 20] := Bitmap32[20, 10]; // copy a pixel from (20, 10) to (10, 20) position

PixelS is a ‘safe’ version of the Pixel property. When reading pixels from the outside of the
bitmap boundary, the value specified by OuterColor is returned. Writing with invalid coor-
dinates will have no effect.

Benchmarking results (writing pixels, Pl 575MHz, TNT2)

Method Pixels/second Description
TBitmap32.Pixel 38 MPixels/s No coordinate range checking
TBitmap32.PixelS 31 MPixels/s With coordinate validation
TBitmap32.SetPixelTS 8 MPixels/s Alpha-blended
TBitmap32.SetPixelFS 2.2 MPixels/s Antialiased, with alpha blending and opacity correction
TCanvas.Pixels 0.5 MPixels/s Attached to TBitmap with pf32bit pixel format
TCanvas.Pixels 0.13 MPixels/s Attached to TBitmap with pf8bit pixel format

As you can see, TBitmap32 provides access to pixels much faster than that in TCanvas.
SEE ALso: OuterColor, SetPixel.

property PixelPtr[X, Y: Integer]: PColor32; // read-only

Converts coordinates of a pixel to its address in memory. Since 7Bjtmap32 uses 32-bit DIBs, its memory is
allocated as continuous string of 4-byte 7Color32 values, starting at the top left corner.

SEE ALso: SetPixel, Bits, ScanLine.
property ScanLine[Y: Integer]: PColor32Array; // read-only

type PColor32Array = ~TColor32Array;
type TColor32Array = array [0..0] of TColor32;

Provides indexed access to each line of pixels. Returns the same address as
PixelPtr[0, Y]. This property acts similar to TBitmap’s ScanLine.

SEE ALso: Bits, PixelPtr.

property StretchFilter: TStretchFilter;
type TStretchFilter = (sfNearest, sflLinear, sfSpline);

StretchFilter specifies color interpolation method for image stretching as well as for some
other operations, like linear transformations. Some functions (linear transformations, for
example) do not distinguish sfSpline filter, even if it is specified, instead they will use
sfLinear.

SEE ALso: "StretchTransfer” on page 27.

property Width: Integer;

Specifies the width of the bitmap in pixels. Width is inherited from TCustomMap.
SEE ALso: Height, SetSize, "TCustomMap” on page 8.

Methods

procedure BeginUpdate; override;

Temporarily prevents generation of OnChanging and OnChange events. The method is
inherited from the BeginUpdate method declared in TThreadPersistent. In order to re-
enable event generation, call EndUpdate.

SEe ALso: EndUpdate, OnChanging, OnChange, "TThreadPersistent” on page 6.

VERSION 0.97 — APRIL 29, 2000

TBitmap32

ALEX DENISSOV

Changed

Changing

Clear

Delete

Draw

DrawTo

page 12

procedure Changed; override;

The Changed method is called automatically after every change in the bitmap is about to
change with a few exceptions (See remarks in OnChange description). It is inherited from
the Changed method of TThreadPersistent and provides the same responce — calls the
OnChange event that is used, for example, by TImage32 to repaint the bitmap to the
screen. In order to prevent multiple repainting of the bitmap while making several
changes to it simultaneously, use BeginUpdate and EndUpdate methods.

SEE ALso: Changing, OnChange, BeginUpdate, EndUpdate.

procedure Changing; override;
Calls the OnChanging event when the bitmap is about to be changed.
SEE ALso: Changed, OnChanging.

procedure Clear; overload;
procedure Clear(FillColor: TColor32); overload;

Fills the entire bitmap with FillColor. If no argument is specified, cIBlack32 ($FFO00000)
is used.

procedure Delete; override;

Call Delete to free up to destroy the allocated DIB, after the Delete call, the bitmap is con-
sidered empty, both Width and Height properties become zeroes.

procedure Draw(DstX, DstY: Integer; Src: TBitmap32); overload;
procedure Draw(DstRect, SrcRect: TRect; Src: TBitmap32); overload;
procedure Draw(DstRect, SrcRect: TRect; hSrc: HDC); overload;

Renders the image specified by Src/hSrc parameter at the location given by the coordi-
nates (DstX, DstY) or the DstRect rectangle.

The method provides both: block transfer (versions with DstX, DstY parameters) and
stretching (versions with DstRect parameter).

When the source is another TBitmap32 object (Src parameter), the method uses Src.Draw-
Mode do determine how it should be blended with the background, and if stretching,
Src.StretchFilter specifies how the image should be stretched (For more information see
“BlockTransfer” and "StretchTransfer” on page 27)

The version with hSrc parameter, is introduced mainly for compatibility reasons. You may
use it to transfer data from bitmaps with other formats, or any other windows objects that
have device handle (DC). It is based on StretchDIBits GDI call, it does not support trans-
parency and always uses nearest neighbor interpolation when stretching.

The Dst parameter must not be necessarily some other bitmap. In fact, it is possible to
copy/stretch areas inside the same bitmap that calls the Draw method. However, in this
case, if source and destination areas intersect, the result is not specified (this is a limita-
tion of the current version).

SEe ALso: DrawMode, StretchFilter, DrawTo, “BlockTransfer” and "StretchTransfer” on
page 27.

procedure DrawTo(Dst: TBitmap32); overload;

procedure DrawTo(Dst: TBitmap32; DstX, DstY: Integer); overload;
procedure DrawTo(Dst: TBitmap32; DstRect: TRect); overload;
procedure DrawTo(Dst: TBitmap32; DstRect, SrcRect: TRect); overload;
procedure DrawTo(hDst: HDC; DstX, DstY: Integer); overload;
procedure DrawTo(hDst: HDC; DstRect, SrcRect: TRect); overload;

The DrawTo method renders the bitmap (or part of it specified bu SrcRect parameter)
onto another bitmap specified by Dst/hDst parameter. It works similar to Draw method
but instead of copying data from some other source, the bitmap is renders itselt to desti-
nation object. See the Draw method description for details.

SEE ALSO: Draw.

VERSION 0.97 — APRIL 29, 2000

TBitmap32 page 13

DrawHorzLine procedure DrawHorzLine(X1, Y, X2: Integer; Value: TColor32);
procedure DrawHorzLineS(X1, Y, X2: Integer; Value: TColor32);
procedure DrawHorzLineT(X1, Y, X2: Integer; Value: TColor32);
procedure DrawHorzLineTS(X1, Y, X2: Integer; Value: TColor32);
procedure DrawHorzLineTSP(X1, Y, X2: Integer);

Draws a horizontal line from (X1,Y) to (X2, Y). The last point is included. These functions
works faster compared to DrawlLine (In fact, DrawHorzLine is the fastest line drawing func-
tion in the world :) . In versions with ‘S’ postfix necessary clipping to a bitmap coordinate
range is provided. In versions without ‘S’ postfix, the X1 value should be less than or
equal to X2. The ‘TSP’ version uses a stipple pattern to vary the color along the line.

SEe ALso: DrawlLine, DrawVertLine, "Line Patterns” on page 17.

DrawLine procedure DrawLine(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure DrawLineS(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure DrawLineT(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure DrawLineTS(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure DrawLineA(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure DrawLineAS(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure DrawLineF(X1, Y1, X2, Y2: Single; Value: TColor32);
procedure DrawLineFS(X1, Y1, X2, Y2: Single; Value: TColor32);
procedure DrawLineFSP(X1, Y1, X2, Y2: Single);

Draws a line from (X1,Y1) to (X2, Y2). In versions with ‘S’ postfix necessary line clipping
to a bitmap boundary is provided.

DrawlLineA and DrawLineAS use modified Bresenham’s algorithm for antialiasing, but do
not support opacity of a color.

DrawlLineF and DrawLineFS use my own algorithm for antialiasing. The end points may
have floating point coordinates and the line opacity is supported. These methods work
approximately 2.5 times slower than DrawLineA and DrawLineAS.

Note: Delphi does not render All the methods, except DrawLineF and DrawLinefS, include rendering of the last point
the last point in a line. with (X2, Y2) coordinates.

DrawLineFSP is a version of DrawLineFS, which supports color patterns, for more informa-
tion see "Line Patterns” on page 17.

DrawlLineF, DrawLineFS and DrawLineFSP do not draw the last point in the line. That makes
them suitable for drawing of series of connected lines with antialiasing and with floating
point coordinates. For example, these functions are ideal to plot the highly detailed
graphs with sub-pixel accuracy:

var
I: Integer;
X1, Y1, X2, Y2, H2: Single;
begin
Bitmap32.Clear(clBlack32);
H2 := Bitmap32.Height / 2;
X1:=0; // store coordinates for the first point
Y1 := H2 - Func(X1);
forI:=1toN-1do

begin
X2:=15*T; // increment X2 to a next point
Y2 := H2 - Func(X2); // move the origin and invert the y coordinate
Bitmap32.DrawLineFS(X1, Y1, X2, Y2, clWhite32); // draw the line
X1 :=X2;
Y1:=Y2;

end;

end;

Note, that most common line antialiasing algorithms (like modified Bresenham’s) use
integer end point coordinates, which would make the curve distorted at such small
steps*.

*In fact, this was the original reason why | started making the Graphics32 library.

ALEX DENISSOV VERSION 0.97 — APRIL 29, 2000

TBitmap32

ALEX DENISSOV

DrawLineFS

DrawLineAS

DrawLineTS

DrawLineS

TBitmap

DrawVertLine

EndUpdate

Empty

FillRect

page 14

200
49 Line Length:

13 O 10 pixels
500 0 50 pixels
5 O 110 pixels
0 220 pixels

1909

254

] 2381

[T

667

370

400
357
286
2271

0 500 1000 1500
Results of performance tests for different line drawing algorithms.

2000 Lines per second x1000

The above figure demonstrates performance test results for different line drawing algo-
rithms in comparizon with TCanvas methods. TBitmap was allocated with pf32bit pixel for-
mat, that appears to be the fastest pixel format for line drawing for most video boards.

The configuration of the system, used for testing is: Plll, 575 MHz, Windows 2000, TNT2,
and the benchmarking test did not include line clipping.

As you can see, drawing lines with TCanvas is very inefficient for short lines. In fact for
lines about 3-4 pixels long even DrawLinefS outperforms TCanvas.

SEE ALso: DrawHorzLine, Draw VertLine.

procedure DrawVertLine(X, Y1, Y2: Integer; Value: TColor32);
procedure DrawVertLineS(X, Y1, Y2: Integer; Value: TColor32);
procedure DrawVertLineT(X, Y1, Y2: Integer; Value: TColor32);

procedure DrawVertLineTS(X, Y1, Y2: Integer; Value: TColor32);
procedure DrawVertLineTSP(X, Y1, Y2: Integer);

Draws a vertical line from (X,Y1) to (X, Y2). The last point is included. These functions
works faster compared to DrawlLine. In versions with ‘S’ postfix necessary clipping to a
bitmap coordinate range is provided. In versions without ‘S’, the Y2 value should be
greater or equal to Y1. ‘FSP’ version supports line patterns.

SEe ALso: DrawlLine, DrawVertLine, "Line Patterns” on page 17.

procedure EndUpdate; override;
EndUpdate re-enables generation of events suppressed by BeginUpdate call.

SEE ALso: BeginUpdate, OnChanging, OnChange.

function Empty: Boolean;

Returns true if the bitmap is empty, that is both Width and Height are equal to zero and
there is no device context (Handle property) allocated.

SEE ALso: Width, Height, Handle.

procedure FillRect(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure FillRectS(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure FillRectT(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure FillRectTS(X1, Y1, X2, Y2: Integer; Value: TColor32);

Fills the rectangle with a specified color. Methods with ‘S’ postfix provide necessary clip-
ping to bitmap boundaries, versions without ‘S’ must be supplied with valid parameters

and X2 >= X1; Y2 >= Y1. Unlike TCanvas, TBitmap32 fills the rectangle including the right
column (X2) and the bottom row (Y2).

SEE ALsO: FrameRect.

VERSION 0.97 — APRIL 29, 2000

TBitmap32

FrameRect

LoadFromFile

LoadFromStream

Lock

RaiseRectTS

ResetAlpha

SetPixel

ALEX DENISSOV

page 15

procedure FrameRectS(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure FrameRectTS(X1, Y1, X2, Y2: Integer; Value: TColor32);
procedure FrameRectTSP(X1, Y1, X2, Y2: Integer);

Draws a rectangle. Row with X2 coordinate and column with Y2 coordinate are included.
‘TSP’ version supports line patterns.

SEE ALso: FillRect, "Line Patterns” on page 17.

procedure LoadFromFile(const FileName: string);

Loads an image from a file. This method uses a temporal TPicture object to load data and
will succeed with any format supported by TPicture.

SEE ALs0: LoadFromStream, SaveToFile, SaveToStream.

procedure LoadFromStream(Stream: TStream);

Loads an image from a stream. This method uses a temporal TPicture object to load data
and will succeed with any format supported by TPicture.

SEE ALso: LoadFromFile, SaveToStream, SaveToFile.

procedure Lock;
This property is inherited from TThreadPersistent class.

SEE ALso: "TThreadPersistent” on page 6.

procedure RaiseRectTS(X1, Y1, X2, Y2: Integer; Contrast: Integer);

This function draws a raised or recessed frame. The contrast property is an integer value
ranging from -100 to +100.

+100% I | -100%

procedure ResetAlpha;

Resets the alpha channel of the entire bitmap to $FF.

procedure SetPixelT(X, Y: Integer; Value: TColor32); overload;
procedure SetPixelT(var Ptr: PColor32; Value: TColor32); overload;
procedure SetPixelTS(X, Y: Integer; Value: TColor32);

procedure SetPixelF(X, Y: Single; Value: TColor32);

procedure SetPixelFS(X, Y: Single; Value: TColor32);

SetPixelT blends the pixel with a bitmap at specified coordinates using the specified color.
The pixel’s alpha channel is used, but the coordinates are not validated.

The overloaded version of SetPixelT with a pixel pointer argument allows setting pixels
addressed with the pointer rather than with coordinates. The pointer is automatically
incremented to a next pixel position each time you call SetPixelT, for example:

var
P: PColor32;
I: Integer;
begin
{ Draw a fading white line from (10, 20) to (265, 20) }
P := PixelPtr[10, 20];
forI:=0to 255 do
SetPixelT(P, Color32(255, 255, 255, 255 - I));
end;

SetPixelTS is the SetPixelT method with added coordinate range verification. If pixel coor-
dinates lie outside the bitmap area, SetPixelTS does nothing.

VERSION 0.97 — APRIL 29, 2000

TBitmap32

ALEX DENISSOV

SaveToFile

SaveToStream

SetSize

TextOut

TextExtent

page 16

SetPixelF and SetPixelFS methods provide antialiased rendering of points.

Bitmap’s
top Ieft\ el
cormer ¢ k

SEE ALso: Pixel, PixelPtr.

procedure SaveToFile(const FileName: string);

Writes a bitmap image to disk. The format of the file is compatible with TBitmap and TPic-
ture objects.

SEE ALs0: SaveToStream

procedure SaveToStream(Stream: TStream);

Stores a bitmap image to a stream. The data in the stream is stored in a form compatible
with TBitmap and TPicture objects.

SEE ALso: SaveToFile

procedure SetSize(NewWidth, NewHeight: Integer); overload;
procedure SetSize(Source: TPersistent; overload;

Call SetSize to set a new width and height of the bitmap. If one of the arguments is zero,
the bitmap is considered empty and its Handle property is set to zero. Calling SetSize
works faster than consecutive changing of Width and Height properties.

If you use another bitmap or control as an argument, the bitmap will be sized to its
dimensions.

If you have an external TCanvas attached, refresh it Handle property after the bitmap
resizing:

Bitmap32.SetSize(100, 200);
Canvas.Handle := Bitmap32.Handle;

After the SetSize call the image will be corrupted and the bitmap should be completely
redrawn.

SEE ALso: Height, Width, Handle.

procedure TextOut(X, Y: Integer; const Text: string); overload;
procedure TextOut(X, Y: Integer; const ClipRect: TRect; const Text: string); overload;
procedure TextOut(ClipRect: TRect; const Flags: Cardinal; const Text: string); overload;

Use TextOut to write a string onto the bitmap. The string will be written using the current
value of Font. Use the TextExtent method to determine the space occupied by the text in
the image.

TextOut does not support transparent text colors.
The second version performs clipping of a text to the ClipRect rectangle.

The last variant provides the most flexible text formatting. See description of DrawText
function in ‘Win32 Developer Reference’ help file for information on Flags and their func-
tion.

SEE ALso: TextExtent, TextWidth, TextHeight.

function TextExtent(const Text: string): TSize;
Returns the width and height, in pixels, of a string rendered in the current font.
SEE ALso: TextHeight, TextWidth, TextOut.

VERSION 0.97 — APRIL 29, 2000

TBitmap32

ALEX DENISSOV

TextHeight

TextWidth

Unlock

UpdateFont

OnChange

OnChanging

page 17

function TextHeight(const Text: string): Integer;
Returns the width, in pixels, of a string rendered in the current font.

SEE ALso: TextExtent, TextWidth, TextOut.

function TextWidth(const Text: string): Integer;
Returns the height, in pixels, of a string rendered in the current font.
SEE ALso: TextExtent, TextHeight, TextOut.

procedure Unlock;
Unlock is inherited from the TThreadPersistent ancestor.

SEE ALso: "TThreadPersistent” on page 6.

procedure UpdateFont;

Use this method before calling the Windows API functions that handle text output. It will
synchronize the device font object with the Font property. You do not have to call Update-
Font when using text output methods of TBitmap32 since they call UpdateFont automati-
cally.

SEE ALsO: Font.

Events

property OnChange: TNotifyEvent;

OnChange occurs after changes were made to the bitmap. Or then the program implicitly
calls the Changed method.

property OnChanging: TNotifyEvent;

OnChange occurs immediately before changes are made to the bitmap. Or then the pro-
gram implicitly calls the Changing method.

Both events are inherited from TThreadPersistent ancestor.

Most functions that alter the bitmap do generate OnChanging and OnChange events. How-
ever due to performance considerations some methods and properties do not generate
events. Namely:

 Pixel-based operations (SetPixelT, SetPixelF..);
* DrawHorzLine* and DrawVertLine* functions;

In this case, if necessary, OnChanging/OnChange events may be generated manually call-
ing Changing and Changed (See "TThreadPersistent” on page 6).

If the bitmap is a part of TPaintBox32, TImage32 or some other container, these events
are linked to the container to notify it on data changes, so that it ‘knows’ then to update
the screen image. When making several simultaneous changes it may be beneficial to
enclose them in BeginUpdate...EndUpdate block followed by the Changed call (and option-
ally preceeded by Changing) so that container repaints only one instead of updating with
every change.

SEe ALso: Changing, Changed, "TThreadPersistent” on page 6.

Line Patterns

Graphics32 defines several functions to support non-uniform lines. That includes gradient
lines, dashed lines etc. The idea is pretty simple: TBitmap32 holds a dynamic array of col-
ors, and a counter which ‘crowls’ along that array and reads colors. The line drawing algo-
rithm queries the color value from the current counter position at each point, when the
counter is automatically incremented to get ready to supply next value to line drawing
routine.

VERSION 0.97 — APRIL 29, 2000

TBitmap32

SetStipple

ResetStippleCounter

SetStippleStep

GetStippleColor

ALEX DENISSOV

page 18

The dynamic array of colors is set with SetStipple:.

procedure SetStipple(NewsStipple: TArrayOfColor32); overload;
procedure SetStipple(NewsStipple: array of TColor32); overload;

The counter, referred here as stipple counter, wraps itself automatically on the line edges
so that the pattern is a loop from the point of view of a drawing function. Some time it
may be useful to be able to reset the counter to its initial position (0), for example, when
starting a new gradient line. This is done with ResetStippleCounter function:

procedure ResetStippleCounter;

There is more, the counter is actually not an integer value, it may have a fractional step,
and even a negative step:

procedure SetStippleStep(Value: Extended);

The default value for counter step is 1.0. It is possible to change the step dynamically
while drawing the line (can’t imagin the reason for that, but why not?).

In order to get the color from the current counter position in the pattern, use GetStipple-
Color function:
function GetStippleColor: TColor32;

If the counter step is fractional, it interpolates the color between two closest colors in the
pattern. GetStippleColor automatically changes the counter value by the stipple step.

Currently line patterns are supported by the following functions:
* DrawHorzLineTSP;

* DrawlLineFSP;

* DrawVertLineTSP;

* FrameRectTSR

VERSION 0.97 — APRIL 29, 2000

TPaintBox32

TPaintBox32

Buffer

BeginUpdate

ClearBuffer

Changed

Changing

EndUpdate

ALEX DENISSOV

page 19

TPaintBox32 is a descendant of the TWinControl class with optimized double-buffering.
The back buffer is a TBitmap32 object which stores the image data before flushing it to a
screen.

This control is capable of accepting overlay layers ("TLayer32” on page 23). However,
TImage32 might be more suitable for rendering layers.

Since TPaintBox32 is double buffered, you don’t need to draw it every time the control
receives WM_PAINT message, as with standard TPaintBox. The repainting is still required
when it is resized.

The source code for TPaintBox32 is located in Image32.pas.

Properties

property Buffer: TBitmap32

Provides direct access to the back buffer.
SEE ALso: "TBitmap32” on page 9.
Methods

procedure BeginUpdate; virtual;

See description of BeginUpdate method of TThreadPersistent, this method has the same
function.

SEE ALso: "TThreadPersistent” on page 6.

procedure ClearBuffer; virtual;

Cleans the buffer with the color specified by Color property, which is inherited from TWin-
Control. Since Color is of type TColor, not TColor32, method uses the Color32 function to
convert it.

If OnCleanBuffer event is not empty, the method does not perform the buffer cleaning, it
just calls the OnCleanBuffer event.

procedure Changed; virtual;

Calls the OnChange event immediately before meking changes to a buffer. Works similar
to the Changed method of TThreadPersistent.

SEE ALso: "TThreadPersistent” on page 6.

procedure Changing; virtual;

Calls the OnChanging event immediately before making changes to a buffer. Works simi-
lar to the Changing method of TThreadPersistent.

SEE ALso: "TThreadPersistent” on page 6.

procedure EndUpdate; virtual;

See description of BeginUpdate method of TThreadPersistent, this method has the same
function.

"TThreadPersistent” on page 6.

VERSION 0.97 — APRIL 29, 2000

TPaintBox32 page 20

Events

OnCleanBuffer ~ property OnClearBuffer: TNotifyEvent;
OnChanging property OnChanging: TNotifyEvent;
OnChange property OnChange: TNotifyEvent;

OnPaint property OnPaint: TNotifyEvent;

OnPaint is issued every time the control receives WM_PAINT event.

OnResize property OnResize: TNotifyEvent;
The resizing of the control is accompanied with the following sequence of events:
« Control changes its size;
« OnChanging;
+ Reallocation of the buffer bitmap;
« OnChanged;
» OnResize;
- OnClearBuffer;
» OnPaint.

See the source for details, I'll document the rest of events later.

ALEX DENISSOV VERSION 0.97 — APRIL 29, 2000

TImage32 page 21

TImage32

Tlmage32 is a descendant of TPaintBox32, which holds an easy manageable bitmap
together with optional overlay layers on a form. It introduces several properties to deter-
mine how the image is displayed within the boundaries of the TImage32 object.

Though it is still possible to interact with the back buffer dirrectly through the inherited
Buffer property, | would not recommend doing it, since the TImage32 implements its own
change notification and buffer cleaning strategy.

Properties

AutoSize property AutoSize: Boolean;

Determines if TImage32 automatically resizes to dimensions of the contained bitmap.

Bitmap property Bitmap: TBitmap32;

Specifies the bitmap which appears on the TImage32 control. The actual position of the
bitmap within the TImage32 boundaries may be acquired using the GetPictureRect func-
tion.

SEE ALso: "TBitmap32” on page 9, BitmapAlign, Scale, ScaleMode, GetPictureRect.
BitmapAlign property BitmapAlign: TBitmapAlign;
type TBitmapAlign = (baTopLeft, baCenter, baTile);

Specifies Bitmap alignment if the image constrol has dimensions different from Bitmap. It
may be centered (baCenter) or their top left corners may be aligned (baTopLeft) or the bit-
map may be tiled (baTile).

ScaleMode = smNormal ScaleMode = smStretch ScaleMode = smScale ScaleMode = smResize

= baTopLeft

BitmapAlign

= baCenter

BitmapAlign

baTile

BitmapAlign

Bitmap positioning with ScaleMode and BitmapAlign properties
SEE ALso: Bitmap, ScaleMode, Scale, GetPictureRect.

ALEX DENISSOV VERSION 0.97 — APRIL 29, 2000

Tlmage32

GetPictureRect

Scale

ScaleMode

BeginUpdate

EndUpdate

SetupBitmap

ALEX DENISSOV

page 22

function GetPictureRect: TRect;

GetPictureRect returns the boundaries of the picture after scaling and aligning. When the
bitmap is aligned in baTile mode, the function returns boundaries of the top-left tile.

SEE ALso: Bitmap, BitmapAlign, Scale, ScaleMode.

property Scale: Single;

Controls the bitmap scale when the ScaleMode is set to smScale. Be carefull when setting
ScaleMode in tile mode. If it is too small, there will be too much tiles and you may end up
waiting for ages while the control repaints each tile.

New bitmap coordinates are converted to integer values after scaling, if you need a sub-
pixel accuracy, use linear transformations, described in "Transformations” on page 27.

SEE ALso: ScaleMode, Bitmap, BitmapAlign, GetPictureRect.
property ScaleMode: TScaleMode;
type TScaleMode = (smNormal, smStretch, smScale, smResize);

Determines how the bitmap is scaled (See the image on the previous page). If the control
is in AutoSize mode, its width and height will match the original width and height of con-
tained bitmap, except to smScale mode, when both picture and control are resized with
account to Scale property.

SEE ALso: Scale, Bitmap, BitmapAlign, AutoSize, GetPictureRect.

Methods
procedure BeginUpdate;

Disables the image repainting until the EndUpdate method is called. Use BeginUpdate
when making multiple changes to the image simultaneously, then call EndUpdate followed
by the Changed call, to repaint the image and to enable further repainting.

BeginUpdate...EndUpdate blocks may be nested, only the outermost one re-enables image
repainting.

Note, that TBitmap32 has the same type of update blocking. You may want to use it if you
are making changes only to a bitmap itself. The BeginUpdate and EndUpdate methods of
TImage32 provide blocking of updates when properties, such as scale, alignment or con-
tained overlay layers are changed.

SEE ALso: EndUpdate.

procedure EndUpdate;

Re-enables image repainting when bitmap changes. The number of EndUpdate calls
should match the number of BeginUpdate calls.

SEE ALso: BeginUpdate.

procedure SetupBitmap(DoClear: Boolean = False; ClearColor: TColor32 = $FF000000); virtual;

SetupBitmap simply sets the size of contained Bitmap (in pixels) to the size of an Image
control, then it may optionally fill the bitmap with specified color. It has the same action
as does the next pair or lines:

Image32.Bitmap.SetSize(Image32.Width, Image32.Height);
if DoClear then Image32.Bitmap.Clear(ClearColor);

VERSION 0.97 — APRIL 29, 2000

TLayer32

TLayer32

Changed

Changing

OnChange
OnChanging

OnPaint

TBitmapLayer32

ALEX DENISSOV

page 23

TLayer32 is an overlay layer (sprite), which is in essense a non-windowed TControl descen-
dant that ‘knows’ how to paint itself to a backbuffer of TPaintBox32 or TImage32 when it
is inserted there as a child.

Since it descends from TControl, you may use all the standard events of Delphi to manip-
ulate layer’s positioning in both design- and run-time. For example, you may find it useful
to change the z-order of sprites with Delphi’s EDIT | Bring to Front / Send to Back menu
commands, etc.

All the standard properties, like Align, Constraints, Anchors, Cursor, PopupMenu, Hint,
Visible, etc are compatible with TLayer32 and its descendants.

TLayer32 is not capable of drawing itself, instead it calls the OnPaint event. Similarly, it
just declares OnChanging on OnChange events but never calls them, that is overriden in
descendants.

The source of TLayer32 is located in Image32.pas.

Methods

procedure Changed; virtual;

Updates the screen image and calls OnChange event.
procedure Changing; virtual;
Calls the OnChanging event.

Events

property OnChange: TNotifyEvent;

property OnChanging: TNotifyEvent;

property OnPaint: TPaintEvent;

type TPaintEvent = procedure(Sender: TObject; BackBuffer: TBitmap32) of object;

The BackBuffer parameter references the back buffer of the parent in case the parent is
TPaintBox32 or its descendant.

It is your responsibility to perform drawing within the rectangle defined by BoundsRect
property inherited from TControl. TLayer32 does not perform neither clipping nor origin
shifting.

The descendant of TLayer32, which holds a TBitmap32 and automatically paints it within
the rectangle specified by the inherited from TControl's BoundsRect property.

It ‘knows’ when and how to repaint itself, and, unlike TLayer32, does generate OnChang-
ing and OnChange events.

Due to performance considerations | would recommend changing BoundsRect property
directly, when you wand to reposition the layer instead of consecutively changing its Left,
Top, Width and Height properties.

Layer’s scaling and opacity options are controlled by corresponding properties of con-
tained bitmap.

VERSION 0.97 — APRIL 29, 2000

TBitmapList32 page 24 |

Properties

AutoSize property AutoSize: Boolean;

Inherited from TControl, this property defines the sizing of the layer. If set to true, the
width and height of the layer are automatically set to dimensions of contained bitmap,
otherwise, the contained bitmap is stretched to fit in dimensions specified by Width and
Height properties.

Bitmap property Bitmap: TBitmap32;

References the contained bitmap.

TBitmapList32

This object contains a collection of bitmaps accessible in design time, see the source for
details.

ALEX DENISSOV VERSION 0.97 — APRIL 29, 2000

TByteMap

TByteMap

page 25

ALEX DENISSOV

Bytes

Height

ValPtr

Value

Width

Empty

Clear

ReadFrom

SetSize

The TByteMap class defined in ByteMaps.pas, may be used to simulate palette-based oper-
ations or to access separate color layers of TBitmap32. TByteMap is an ancestor of TCus-
tomMap and is assignment compatible with TBitmap32. It uses the same thread-safe
locking and change notification mechanism as TBitmap32.

Change notifications work similar to those in TBitmap32.

Properties

property Bytes: TArrayOfBytes;

type TArrayOfBytes = array of Byte;

Returns the pointer to the internal array of bytes. Row-major storage order, top line
comes first.

property Height: Integer;

The height of the stored byte map in pixels.

property ValPtr[X, Y: Integer]: PByte;

Returns a pointer to the specific byte in the array.

property Value[X, Y: Integer]: Byte; default;

Provides coordinate-based access to stored bytes. This function does not perform range
checking of its arguments. Be sure, that byte map is not empty and both X and Y lie in a
valid range.

property Width: Integer;

The width of the stored byte map in pixels.

Methods

function Empty: Boolean; virtual; // read-only
Returns true if the byte map contains no data, that is when both width and height equal O.

procedure Clear(FillValue: Byte);

Fills the entire byte map with specified value;

procedure ReadFrom(Source: TBitmap32; Conversion: TConversionType);
type TConversionType = (ctRed, ctGreen, ctBlue, ctAlpha, ctUniformRGB, ctWeightedRGB);

The ReadFrom method allows reading of color layers from Bitmap32 as well as filling the
byte map with a grayscale version of Bitmap32. The byte map is automatically resized to
Source dimensions. When Conversion parameter is ctUniformRGB, the byte value is written
as the average value of red, green and blue components of corresponding pixel in the

source. If it is equal to ctWeightedRGB, the Intensity function is used instead of averaging.

SEE ALso: WriteTo, "Intensity” on page 4.

procedure SetSize(NewWidth, NewHeight: Integer); overload;
procedure SetSize(Source: TPersistent); overload;

Similar to TBitmap32.SetSize, this function sets the byte map dimensions according to
specified parameters. The following TPersistent descendants may be used as the Source
parameter: TByteMap, TBitmap32, TGraphic, TControl, nil;

VERSION 0.97 — APRIL 29, 2000

TByteMap page 26

WriteTo procedure WriteTo(Dest: TBitmap32; Conversion: TConversionType); overload;
procedure WriteTo(Dest: TBitmap32; const Palette: TPalette32); overload;
type TConversionType = (ctRed, ctGreen, ctBlue, ctAlpha, ctUniformRGB, ctWeightedRGB);
type TPalette32 = array [0..255] of TColor32;

WriteTo fills the Dest bitmap using the values stored in the byte map. For ctRed, ctGreen,
ctBlue and ctAlpha values of the Conversion parameter, this method fills the correspond-
ing color layer in the destination, while the rest color components remain intact. stUni-
formRGB and ctWeightedRGB have the same action, they fill the bitmap with
corresponding grayscale values (the alpha channel is filled with $FF).

The second overloaded version of WriteTo uses TPalette32 to map a byte value to a color
in destination.

ALEX DENISSOV VERSION 0.97 — APRIL 29, 2000

Transformations

Transformations

ALEX DENISSOV

page 27

Graphics32 supports scaling and other linear transformations of bitmaps with sub pixel
accuracy they are implemented in Transform32.pas unit.

All the transformation functions have two common parameters: Src and Dst that specify
the source and destination bitmaps respectively. Then performing transformations, nei-
ther source nore destination parameters may be equal to nil. In this case, function will
generate an exception. They may be empty however, in this case no transformation will
be berformed. Transforming the data inside the same bitmap, when Src = Dst, has some
limitations, generally in this case source and destination regions must not intersect (this
is discussed in details when discussing particular functions).

BlockTransfer

BlockTransfer is similar to the BitB/t function from Windows GDI.

procedure BlockTransfer(
Dst: TBitmap32;
DstX: Integer;
DstY: Integer;
Src: TBitmap32;
SrcRect: TRect;
CombineOp: TDrawMode);
type TDrawMode=(dmOpaque, dmBlend);

It performs copying of the bitmap fragment specified by SrcRect into location (DstX, DstY).
If CombineOp=dmBlend, the fragment is blended to destination using its alpha channel
and MasterAlpha property, otherwise the destination pixels are replaced.

It is not required for DstRect and SrcRect to lie entirely inside the corresponding bitmap,
since the function provides necessary clipping.

The result is not specified when transferring data inside the same bitmap (Src=Dst) and if
in the same time SrcRect intersects with DstRect. In this case it is recommended to use a
temporary bitmap buffer.

StretchTransfer

StretchTransfer is similar to StretchBlt or StretchDIBits functions from WindowsGDI.

procedure StretchTransfer(
Dst: TBitmap32;
DstRect: TRect;
Src: TBitmap32;
SrcRect: TRect;
StretchFilter: TStretchFilter;
CombineOp: TDrawMode);
type TStretchFilter = (sfNearest, sflLinear, sfSpline);

type TDrawMode=(dmOpaque, dmBlend);

It performs copying and, if necessary, stretching of the bitmap fragment specified by
SrcRect into location specified by DstRect.

StretchFilter specifies color interpolation method for image stretching. The fastest filter is
sfNearest, although the quality of the stretched image is fair; sfLinear is several times
slower, but it produces more or less decent results in most cases, sfSpline — is an approx-
imation of spline interpolation, for some applications its result may be too smooth and
blurry, but when using with large magnification factors, it usually yields better image
compared to sfLinear.

Of cource, there are tons of other filters which may produce better results, however they
are very specific to particular application needs (probably I'll include some of them in
future versions).

VERSION 0.97 — APRIL 29, 2000

Transformations

ALEX DENISSOV

page 28

Unlike in BlockTransfer function, SrcRect must lie inside the Src bitmap boundaries, other-
wise function will generate an exception.

The result is not specified when transferring data inside the same bitmap (Src=Dst) and if
in the same time SrcRect intersects with DstRect. In this case it is recommended to use a
temporary bitmap buffer.

SEE ALso: BlockTransfer.

Transform

The Transform function is responsible for arbitrary geometrical transformations of bit-
maps or their fragments. In current version it only supports linear transformations.

procedure Transform(
Dst, Src: TBitmap32;
SrcRect: TRect;
Transformation: TTransformation);

The Transformation parameter is a reference to a descendant of TTransformation class
defined in Transform32.pas

TTransformation = class(TObject)
public
function GetTransformedBounds(const Src: TRect): TRect; virtual; abstract;
procedure PrepareTransform; virtual; abstract;
procedure Transform(DstX, DstY: Integer; out SrcX, SrcY: Integer); virtual; abstract;
procedure Transform256(DstX, DstY: Integer; out SrcX256, SrcY256: Integer); virtual; abstract;
end;

Only linear transformation is currently implemented.

When Src.StretchFilter is not sfNearest, Transform uses linear (bilinear actually) interpola-
tion for magnification (along any axis) as for minification, it is not as accurate as
StretchTransfer function. If you need better quality when minimizing the bitmaps, trans-
form them into the temporary buffer so that there is no minification invlolved, then
StretchTransfer to a final bitmap.

Even if Src.StretchFilter is stSpline, Transform operates as if it were sfLinear.

There is an issue with antialiasing and edges. How to make them antialiased and still
keep the performance? The solution implemented in Graphics32 is similar to the one
used in OpenGL (I'm not quite sure about Direct3D since | don’t know it, but | think it
uses the same method).

You just have to provide the source bitmap (or its region) with transparent edges. If the
original image, you’ll have to force the alpha channel on its edges to zeroes. Remember,
that color is interpolated as well, it means that for nice fadeout the color on the border
should match the color of pixels lying next to the border.

In case the bitmap is transformed in dmOpaque mode, it might be better to keep the color
on the edge equal to the color of the background.

TLinearTransformation

TLinearTransformation defines a transformation that may be used as parameter in the
Transform function.

The linear transformation is defined by 3x3 homoheneous matrix of double precision
floats:

type TMatrix3d = array[0..2, 0..2] of Extended;

(The ‘3d’ postfix does not have anything to do with 3D transformations, it just means that
matrix is 3x3 and each value is of a double precision).

VERSION 0.97 — APRIL 29, 2000

Transformations

Matrix

GetTransformedBounds

PrepareTransform

ALEX DENISSOV

Transform

Clear

Rotate

Skew

Scale

page 29

The coordinates are transformed as

M M M

Xgst 10,00 Mi1,01 Mi2,01| [¥ge
Yass | = Mo M M| Ve

notused| | Mg o) Mpy 01 My 5| | 1
Only two top rows are used in a final stage when transforming coordinates.

Properties

property Matrix: TMatrix3d;

Holds the transformation matrix;
Methods

function GetTransformedBounds(const Src: TRect): TRect; override;

Returns the bounding rectangle of the region that will be obtained from the Src rectangle
after its transformation.

procedure PrepareTransform; override;

PrepareTransform must be called before using Transform or Transform256 methods after
any changes were made in transformation matrix.

procedure Transform(DstX, DstY: Integer; out SrcX, SrcY: Integer); override;
procedure Transform256(DstX, DstY: Integer; out SrcX256, SrcY256: Integer); override;

These functions provide reverse transformation of the point (DstX, DstY) back into its
position at the source bitmap. Transform256 provides the same result, only the coordi-
nates are multiplyed by 256.

procedure Clear;

Resets all the transformations (loads identity matrix).

procedure Rotate(Cx, Cy, Alpha: Extended); // in degrees

First the origin is translated to (Cx, Cy) point, then the image is rotated around the origin
by Alpha degrees

coso sind 0
M = | _sino. cosa 0 |M;
0 0 1

and finally the origin is shifted back.

procedure Skew(Fx, Fy: Extended);

Adds the skew to the transformation:

1 Fx O
M=1fFy 1 0|M;
0 0 1

procedure Scale(Sx, Sy: Extended);

Adds the scale transformation:

Sx 0 0
M=10 sy 0|M;
0 0 1

VERSION 0.97 — APRIL 29, 2000

Filters

Translate

Filters

AlphaToGrayScale
IntensityToAlpha
Invert

InvertRGB
ColorToGrayscale

ApplyLUT

Finalization

ALEX DENISSOV

page 30

procedure Translate(Dx, Dy: Extended);

Translates the image:

1 0 Dx
M=10 1 DyM;
0 0 1

This unit currently implements only a basic operations, more to come in future versions.

Only a few simple functions is currently available. They all support in-place operations,
that is Src may be the same as Dst.

procedure AlphaToGrayscale(Dst, Src: TBitmap32);

procedure IntensityToAlpha(Dst, Src: TBitmap32);

procedure Invert(Dst, Src: TBitmap32); // inverts all channels including alpha
procedure InvertRGB(Dst, Src: TBitmap32); // inverts all channels excluding alpha
procedure ColorToGrayscale(Dst, Src: TBitmap32);

procedure ApplyLUT(Dst, Src: TBitmap32; const LUT: TLUT8);
type TLUT8 = array [Byte] of Byte;

That’s all for now.

Do not forget to send your comments and suggestions, and visit my web page for updated
versions of Graphics32, as well as for some other freeware components.

Good luck,

Alex Denissov
denisso@uwindsor.ca
http://www.geocities.com/den_alex

VERSION 0.97 — APRIL 29, 2000

http://www.geocities.com/den_alex
mailto:denisso@uwindsor.ca
mailto:denisso@uwindsor.ca

	Overview
	License
	Installation
	Introduction
	Color Types
	Color Functions
	Color Construction and Conversion
	Color32
	Gray32
	WinColor
	HSLtoRGB
	RGBtoHSL

	Color Component Access
	RedComponent
	GreenComponent
	BlueComponent
	AlphaComponent
	Intensity
	SetAlpha

	Color Blending
	Blend
	BlendEx
	Combine
	ColorAdd
	ColorSub
	ColorModulate
	ColorMax
	ColorMin

	Opacity Correction for Antialiasing
	SetGamma

	TThreadPersistent
	Properties
	LockCount
	UpdateCount

	Methods
	BeginUpdate
	Changed
	Changing
	EndUpdate
	Lock
	Unlock

	Events
	OnChange
	OnChanging

	TCustomMap
	Properties
	Height
	Width

	Methods
	Delete
	Empty
	SetSize

	TBitmap32
	Properties
	Bits
	DrawMode
	Font
	Handle
	Height
	MasterAlpha
	OuterColor
	Pixel
	PixelPtr
	ScanLine
	StretchFilter
	Width

	Methods
	BeginUpdate
	Changed
	Changing
	Clear
	Delete
	Draw
	DrawTo
	DrawHorzLine
	DrawLine
	DrawVertLine
	EndUpdate
	Empty
	FillRect
	FrameRect
	LoadFromFile
	LoadFromStream
	Lock
	RaiseRectTS
	ResetAlpha
	SetPixel
	SaveToFile
	SaveToStream
	SetSize
	TextOut
	TextExtent
	TextHeight
	TextWidth
	Unlock
	UpdateFont

	Events
	OnChange
	OnChanging

	Line Patterns
	SetStipple
	ResetStippleCounter
	SetStippleStep
	GetStippleColor

	TPaintBox32
	Properties
	Buffer

	Methods
	BeginUpdate
	ClearBuffer
	Changed
	Changing
	EndUpdate

	Events
	OnCleanBuffer
	OnChanging
	OnChange
	OnPaint
	OnResize

	TImage32
	Properties
	AutoSize
	Bitmap
	BitmapAlign
	GetPictureRect
	Scale
	ScaleMode

	Methods
	BeginUpdate
	EndUpdate
	SetupBitmap

	TLayer32
	Methods
	Changed
	Changing

	Events
	OnChange
	OnChanging
	OnPaint

	TBitmapLayer32
	Properties
	AutoSize
	Bitmap

	TBitmapList32
	TByteMap
	Properties
	Bytes
	Height
	ValPtr
	Value
	Width

	Methods
	Empty
	Clear
	ReadFrom
	SetSize
	WriteTo

	Transformations
	BlockTransfer
	StretchTransfer
	Transform
	TLinearTransformation
	Matrix
	GetTransformedBounds
	PrepareTransform
	Transform
	Clear
	Rotate
	Skew
	Scale
	Translate

	Filters
	AlphaToGrayScale
	IntensityToAlpha
	Invert
	InvertRGB
	ColorToGrayscale
	ApplyLUT

	Finalization

