Discrete-event simulation system

Dels

Versionl.1l

Copyright © 1999 Softland (Rivne, Ukraine)

Programmer's Guide

Rivne 1999

Programmer’s Guide

CONTENTS

10T [T o 3
[0[S L= 1o o H PP 3
1S = 1o 3
1. SIMUIAHONTOGIC . e ettt e e e e e e e e et et et e et e e e aeaaas 4
1.1 ODJECE Of DEISI . oe it et et e e e e e e 4
1.2. Themain Simulation algorithmo e e e e 6
1.3. Advantages of Delsi SIMUlation 10QICuieieiiieie e e e 7
B2 |V o (= I 10 0= 7

B T I 01 1 o 1= 8
A, DEISI COMPONENESttt e et e e et et et e et e ettt e et et e e et e ren e een e 9
A TIMOOE Lo e e e e e e e e e 9
4.2, TSCNEAUIES .t e e e e e e e e e et e e e 11
A3 TBIOCK ..t e e e e 12
o I T 0T = (o] S PP 14
A5, TQUBLE ...ttt et e et e et e e e e et et e et et et e e e e e e e e 15
N T IS = ol PP 17
A7 TQUEUEPITY ...ttt e et et e et e et e et e et et e et e et e e e e e 18
T R IS = 4 S PPN 20
T IS (0] =0 | PPN 22
L IS (0 == o 4 PP 24
T 1= 0 11 7= o 26
A.A2. TDIVIOEY ..ottt et e e e et et et e et e e e e e et e et e 27
I N 7N 1 ¢ o 1 P 28
A O = (] PP 29
LN L €7 = TP 30
LR B = o U = o TP TURTPPR 31
A7 TMUIIRANG ..t e e e e e et et e e e e e e ee e 32
S 1= £ 0= P 34

HOW 10 CONEACE SOl AN ? ... e et e e e e e e e e e et e te et enans 35

Programmer’s Guide 3

INTRODUCTION

Themain ideaof Delsi modeling is that your queuing formalization may be performed as an oriented
graph with the nodes, which corresponds to some processing objects (such as generators, queues, servers
etc). The arcs of the graph correspond to streams of transactions. Some user algorithms may control
processing objects and transaction rou ting.

The simulation system is designed by use of object -oriented approach. The whole model and
processing objects (so called blocks) are implemented as Borland® Delphi™ components. The transactions
areimplemented as objects.

The user algorithms are im plemented as a reaction on events such as entering block, routing, exit
from block and others. During the simulation process, transactions are being passed from one block to
another. By use of the methods and properties of componentsit is possibleto cont rol behavior of the
model and obtain necessary statistical results.

From the end-user's point of view, Delsi allows him to use al the power of Delphi (GUI, OOP, and
components) as an environment for developing awide variety of simulation models, impleme nted as end
products. Delsi, in combination with astandard PC and Delphi creates a non-expensive simulation
workplace for devel oping valuable applications.

REGISTRATION
After purchasing Delsi, pleasefill registration form at http:// www.softland.rv.ua/delsi/register.htm or print file

register.pdf , fill theform and send it to Softalnd. After registration you will get an opportunity for the
technical support, which include:

- freefixing updates

- freeupgrade from Delsi for Delphi ™ 3.0 to the same Delsi verion for Delphi ™ 4.0 on your demand

- freedowngrade from the Delsi for Delphi ™ 4.0 to the same Delsi verion for Delphi ™ 3.0 on your
demand

- free consultation concerning Delsi viae -mail (up to 3 messages per month and up -to 3 ours of our job
for answering) during one year since purchasing.

- information about new releases

Registered users may apply to Softland for developing new components. Thiswisheswill be taken into
concideration. If the component suggested by user will be implemented, this user will receiveit for free.
Softland do not promiseto develope the components on your wishes or suggestions.

INSTALLATION
How toinstall Delsi?

- Extract delsi_*.zip into some directory, for instance, C: \DELPHI\DELSI
- Start Delphi

- Choose Componet|install Packages

- Click“ Add"

- For Delphi 3.0, type thefull file name C: \DELPHI\DEL SI\delsi.dpl

- For Delphi 4.0, type the full file nam e CADELPHI\DEL SI\delsi.bpl

- Click " Open”

- Click*“ Ok”

Y ou should have now a new page on your component palette called Delsi with new components.

Programmer’s Guide

1. SIMULATION LOGIC
1.1. Objects of model

Delsi isbased on the Theory of aggregate models found inthe beginning of 70’ s by Ukrainian
Academician N.P.Buslenko. The basic unit of an aggregate model is Piecewise Linear A ggregate (PLA).

Aggregate is an abstract object, which functionsintime. It is capableto perceive entering signals X,
to produce output signals Y and to be in each instant in acondition Z. The dynamics of PLA hasan
"event" essence. Two key operations correspond to Delsi aggregates. activation and odering next
activation time.

There are two kinds of aggregatesin Delsi: schedulers and blocks.

Scheduler isan aggregate, which just hanldes some user -processed event. It does not operate with
transactions.

Block is an aggregate which passes and receives transactions.

Each block is characterized by two states: Ready/not ready to receive transaction and Ready/not
ready to give transaction. These states are necessary conditions for transaction transfer . Generally, the
behavior of each block is described as areaction to the followi ng events: OnEnter (transaction isentering
the block), OnRouting (the block is Ready to give and it needs to pass the exiting transaction to another
block), OnExit (transaction leaves the block during the pass). For some blocks there are additional
specific events which determine their behavior.

The inheritance of aggregates has the following structure.

TConponent
Taggr egat e
TSchedul er
TBI ock
TGener at or
TProQueue
TQueuePrtyCust om
TQueuePrty
TSt or agePrty
TSer ver
TQueueCust om
TQueue
TSt ack
TSt or age
TAssenbl er
TDi vi der
TCr eat or
TGat e
TTer m nat or
Thodel
TMul ti Rand

TTabul at or

Programmer’s Guide

Activation is an event initiated by changes of model time. The activation of scheduler isjust initiating
user-processed event. For the generator, activation is the producing of a new transaction. For servers,
gueues, storagesit is thefinishing of the waiting peri od for a certain transaction.

Oredering next activation time takes place during the handling of the certain aggregate events. For
example, when the transaction |eaves the generator we order next activation time (the time interval till the
next generation) handling OnEXxit event. When transaction entersinto the serv er or storage we order the
next activation time (the service time) by handling OnEnter event. During ordering next activation time
the record with the following fields will be inserted into the system calendar (List of Future Events):

Block, Trancastion/ nil, Activation Time.

FIFO rule of activation. If several aggregates should be activated at the same time they will be
activated with FIFO rule (First orderd - first activated).

Transaction is a dynamic object, which moves through the fixed structure of blocks. They resemble
GPSS transactions but they can have an arbitrary structure.

Delsi hasthe following limitation: One transaction may be only in one block at the sametime.

Programmer’s Guide

1.2. The main simulation algorithm

The simulation logic is controlled by the main simulation algorithm, which is performedin pseudo -
programming language as show n below. The main cycle of the simulation algorithm scans the system
calendar. In the case of Delsi, the system calendar is called the List of Future Events (LFE). From
theoretical point of view LFE keeps the interior events of aggregates.

repeat
Take the next elenent formthe List of Future Events;
Model Ti me: =NewTi ne;
Model . OnNewTi ne; I/ You can check what has happened
If Aggregate is Schedul er then
Acti vat e(Schedul er)

el se
begi n
Activate (Block, Trarsaction);
Insert this Block into the List of Current Events;
Using List of Current Events do all possible transacti on passes;
end;

until WModel Ti me<Li mt Ti ne;

List of Current Events (LCE) includesal blockswhich areinthestate Ready to Give.
Implementation of all possible passesis controlled by the following agorithm.

r epeat
for all blocks in the LCEdo
begin
Bl ock. OnRout i ng; /l Pass transaction to another block

if not Bl ock. ReadyToG ve t hen
Renove Bl ock fromthe LCE;
end;
until at |east one pass have been done;

The user can route the transaction in the routine of OnRouting event in the following way:

if Condition then

Thi sBl ock. PassTo(Bl ock1l)
el se

Thi sBl ock. PassTo(Bl ock2) ;

The procedure PassTo does the following:

i f Anot her Bl ock. ReadyToRecei ve(PassedTr ansacti on) t hen

begi n
Thi sBl ock. Exi t Fr onBl ock /I The transaction leaves this block
Thi sBl ock. OnExi t; /I User-defined handling
Anot her Bl ock. OnEnt er; /I User-defined handling
Anot her Bl ock. Ent er ToBI ock; /I The transaction entersto another block
Model . OnAf t er Pass; /I User-defined handling

end;

Programmer’s Guide

1.3. Advantages of Dels simulation logic

Main simulation algorithm does not know about transactions

As we have seen, the main simulation a gorithm operates with states and events of blocks.
Transactions are generated, moved and terminated during different operations with blocks. The main
simulation algorithm knows almost nothing about the transactions. Thus, the speed of the main
simulation algorithm does not depend on the number of transa ctionsin the system.

Direct accessto transactionsin the block

Independently of the number of transactionsin the block, the search and removal of certain
transaction from the block is an one -step operation. Let's imagine the storage with 100,000 transactions
In some moment of the model time one of them has to be removed. The node of List of Future Events
storesthe address of the transaction and address o f the storage. Because transactions are stored in the
storagein abidirectional list, this particular transaction will be found and removed directly. That iswhy
the term of activation and exiting does not depend on the number of transactionsin storage. The samerule
appliesto queues with limited waiting time. Generaly, for al blocksof Delsi there are no cycles during
entering, activation or exiting. So, the number of transactions in the model does not influence the
performance.

All time dependences are concentrated in LFE

The blocks place transactions independently of thier activation time. The List of Future Eventsisa
single data structure where all time dependences are maintained. In simulation systems with
intensive load, the length of LFE may reach hundreds of thousands of nodes. That iswhy LFE
maintenance plays such adecisive role in the performace. Delsi is designed in such way that I/0
performance of LFE has binary -logarithmic dependence oniits length.

2. MODEL TIME

The model time isatime of model functioning. It is not physical time. Before simulation start -up and
after model reset the model timeis equal to O.

function Model Tine: real;

Returns current model time.

Programmer’s Guide

3. TRANSACTIONS

Declaration
TTransaction = cl ass(TObj ect)
Methodes

procedure TTransaction. SetPrty(Prty: byte);

Setspriority level Prty for the transactioin
procedure TTransacti on. Set Preenpt;
Makes the transaction preemptive.
procedure TTransacti on. Set NonPreenpt ;
Makes the transaction non -preemptive.
function TTransaction.GetPrty: byte;
Returns the priority of the transaction.
function TTransaction.|sPreenpt: bool ean;

Returns Trueif the transaction is preemptive. Otherwise returns False.

function TTransaction. Get TransI D: | ongint;

Returnsthe transaction ID. IDs of al “ alive’ transactions are unique but newly generated
transaction may repeat the 1D of terminated one.

Inheritance

It isvery important that you can redefine TTransaction to obtain the new customized fields. For
instance,

MyTransaction = class (TTransaction);
public
MyFi el d1: integer;
MyFi el d2: real;
end;

When you redefine TTransaction you have to inform the internal simulation manager about that
new redefinition. Do this by calling method TModel.SetTransactionClass before start of
simulation:

Model . Set Transacti onCl ass(MyTransacti on);
When you need to use your own fields, do thisin the following way.

procedure TForml. Ent ranceExit(Sender: TBl ock; Trans: TTransaction);
begi n

(Trans as MyTransaction). MyFi el d2: =Mbdel Ti ne;
end;

Programmer’s Guide 9

4. Delsi COMPONENTS
4.1. TMode

Declaration

TMbdel = cl ass(TConponent)
Purpose

TModel isabasic component, which isresponsible for the whole model functioning. With help of
TModel we can start and stop simulation the process or clear statistics collected in blocks. One more
useful feature of TModel isthe possibility of registration of transaction passes and fixing the moments of
time changes. There can be only one TModel component in an application.

Properties
property HeapSi ze: byte;

Before simulation start -up the application allocates a cut of memory. In HeapSize you can set the
size of allocated memory in Megabytes. The range of possible valuesisfrom 1to 128. The
default valueis 4.

property PageSi ze: integer;

All dynamic objects of Delsi, like transactions, elements of LFE and LCE are stored in memory
pages. This property sets the page size in bytes. The range of possible valuesis from 1024 to
32768. The default value is 1024.

M ethods

procedure Cl earStatistics;

Clears statistics of all blocks. Asarule, stationary stochastic systems pass a phase of transient in
their initial period of time. If the contributor wants to evaluate parameters of asystem in its stable
state, the transitional process brings an error t 0 outcomes. We can cut off the errors by clearing
statistics after the transient phase.

procedur e Reset;

This procedure resets the model into itsinitial state so, that it becomes ready for the next run.
Usethis procedure when you need several simulati on runs with changing input parameters.

Procedure Set Transacti onCl ass(TransCl ass: Tcl ass);

Y ou need this method when you redefine class TTransaction to obtain your own customized
structure of transaction. Use this procedure before simulation run (i.e. be forefirst calling
TModel .Simulate).

procedure Sinmulate(TLimt: real);

Starts simulation run. The simulation will proceed until reaching avalue TLimit by model time.

Programmer’s Guide 10

procedure Stop;

Stops simulation run.

Events

TAft er PassEvent = procedure(Sender: TBl ock; // sending block
Recei ver: TBl ock; //receiving block

Trans: TTransacti on)/ passed transaction
of object;
property OnAfterPass: TAfterPassEvent;

The event occurs after the transaction is passed from one block to another.

TBef or eMbdel GoOnEvent = procedure of object;
property OnBeforeTi mreGoOn: TBef or eMbdel GoOnEvent ;

This event occurs before model running and before blocks' events OnBeforeTimeGoOn.
So, it' sthefirst Delsi event at all.

TDeadl ock = procedure of object;
property OnDeadl ock: TDeadl ock;

Thisevent isinitiated after detection of deadlock in the simulated system. Deadlock in Delsi
means the List of Future Eventsis empty.

TNewTi neEvent = procedur e(Aggr egat e: Taggr egat e; // activated aggregate

Trans: TTransaction) //nil or activated transaction
of obj ect;
property OnNewTi me: TNewTi neEvent ;

The event occurs when model time changes the value. Parameter Aggregate refersto activated
aggregate (block or scheduler). Transisthe transaction, which should leave the block (server,
gueue or storage). If the activated aggregate is agenerator or sch eduler, Transis equal to nil.

Programmer’s Guide 11

4.2. TScheduler

Declaration

TSchedul er = cl ass(TAggr egat e)
Purpose

TScheduler isintended to initiate the events through some intervals of simulation time. We need it to
control the simulation process. By use of this event, the user can change the parameters of the model, stop
simulation run, clear statistics or lock/unlock gates.

M ethods

procedure Next Ti me(ActivationTine: real);
Sets the time to the next activation.

Events

TBef or eTi mneGoOnEvent = procedure(Sender: TAggregate) of object;
property OnBeforeTi mreGoOn: TBef oreTi neGoOnEvent ;

The event occurs before simulation run. We can useit to do any user -defined action before
simulation, for example, to initialize some parameters. This event is especialy useful for planning
thefirst user -defined procedure used during simulation run. We plan the next event using method
NextTime.

TPl annedEvent = procedure(Sender: TAggregate) of object;
property OnPl anned: TPl annedEvent;

This event is aresult of activation, which happens after expiration of ActivationTime. By handle of
this event we can do any possible changes for the model. If you need to order the next activation, use
NextTime again.

Programmer’s Guide 12

4.3. TBlock

Declaration

TBl ock = cl ass(TAggr egat e)
Purpose

TBlock is an ancestor of al Delsi blocks. Here we describe methods and events common for all
blocks.

Methods

procedure Cl earStatistics;

Clears accumulated statistics in the block. When TModel.Clear Statisticsis being executed, it
callsthe method Clear Statisticsfor al blocks of amode.

function Count: |ongint;

Returns the current number of transactions in the block.
function Entries: |ongint;

Returns the total number of transactions, which have entered into the block.
function Exits: |ongint;

Returns the total number of transactions, which have exited from the block.
function | sReadyToRecei ve(Trans: TTransacti on): bool ean;

Returns Trueif the block isready to receive transaction pointed by Trans.
function Pass(Bl ock: TBl ock): bool ea;

Passes current transaction to the block Block. If transaction is successfully passed the function
returns True. Use this method only when you handle OnRouting, OnPreempt, OnRelease and
OnTimeFinish events.

Events
TOnEnt er ToBl ock = procedur e(Sender: TBI ock; /I This block
Trans: TTransacti on)// Entering transaction
of object;

property OnEnter: TOnEnter ToBl ock;

The event occurs when transaction enters into the bloc k. It isnot applicable for TGenerator.

TOnEXxi t FronmBl ock = procedure(Sender: TBI ock; /l This block
Trans: TTransacti on)/ Exiting transaction
of object

property OnExit: TOnExit FronBl ock;

The event occurs when transaction leaves the block. It is not applicablefor TTerminator.

Programmer’s Guide 13

TOnRout i ngEvent = procedure(Sender: TBl ock; /I Sending block (this block)
Trans: TTransacti on)// Passed transaction
of object;

property OnRouting: TOnRouti ngEvent;

Processing this event you can route transaction to another block with the help of Pass method.
By using Delphi’s power you can create very sophistic ated procedures of routing.

Programmer’s Guide 14

4.4, TGenerator

Declaration

TBIl ock = cl ass(TBI ock)
Pur pose

TGenerator produces one transaction during the activation. It s commonly used source of transactions
inthe model. We use it when we need to simulate arrival of served elements. Usually, the arrivals have
some intensity described by probability distribution. For simulation of sequentia arrivals, when
transaction leaves the generator we need to order next activation, i.e. next transaction generation.
Appropriating avalue ActivationTime random numbers, we simulate statistical properties of arrival
intensity.

Methods
function AverageTi me: extended,;

Returns the average time between the moments when transactions |eave the generator.

function DeviationTi ne: extended;

Returns the standard deviation of time between the moments when transactions leave the
generator.

procedure Next Ti me(ActivationTine: rel);
Sets the time to the next activation (generation of transaction).

Events

TOnAft er Gener ati onEvent = procedure(Sender: TBl ock; Trans: TTransaction) of obj ect;
property OnAfterGeneration: TonAfterGenerati onEvent;

The event occursright after generation of transaction. It' s agood time to set the transaction
propertieslike priority, preemptive property or fields defined by user.

TBef or eTi neGoOnEvent = procedure(Sender: TAggregate) of object;
property OnBeforeTi mre@On: TBef oreTi meGoOnEvent;

The event occurs before simulation run. We use it to order the time of generation of the first
transaction. Certainly, we do it with help of NextTime method.

property OnExit: TOnExitFronBl ock;

The event occurs when transaction leaves the block. It is a good moment to order the next
transaction generation by use of NextTime method.

property OnRouting: TOnRouti ngEvent;

See 3.3. Thlock

Programmer’s Guide 15

4.5. TQueue

Declaration

TQueue = cl ass(TQueueCust om
Purpose

This component simulates simple FIFO queue. It handles transactions in accordance with the rule
“First input —first output” . The queue may be limited by capacity.

Another useful feature is the possibility to limit awaiting period in the queue. Y ou can do thisby the
ordering the activation when a transaction enters the queue.

If the number of transactionsin the queue isless than its capacity, the queueisinthe stateof * Ready
to Receive’ . If the queue keeps one or more transactions, itisi n the state of “ Ready to Give”.

Properties
property Capacity: |ongint;

Capacity is the greatest possible number of transactions in the queue. If the number of
transactionsis equa to capacity, the queueis” Not Ready to Receive’ . If Capacity isequal to O,
the possible number of transactionsin the queue is unlimited.

Methods
function AverageCount: extended
Returns the average number of transaction in the queue (average length).
function AverageTi me: extended,;
Returns the average time spent in the queue.
function Count: |ongint;
See 3.3. TBlock
function DeviationTi me: extended

Returns the standard deviation of the time spent in the queue.
function |sReadyToReceive(Trans: TTransaction): bool ean
Returns True if the queueis“ Ready to Receive” transaction Trans.
functi on MaxCount: | ongint;
Returns maximal number of transactionsin the queue (maximal length).
procedure Next Ti me(ActivationTine: real);
Limits the waiting time for entering transaction by the value of ActivationTime. Use this method

only when handle OnEnter event.

function SAverageTi ne: extended

Programmer’s Guide

Returns average non-zero time spent by transactionsin the queue.

function SDeviationTi ne: extended;
Returns the standard deviation of the non -zero time spent by transactionsin the queue.
function TineLim tExits: |ongint;

Returns the number of transactions, which have abandoned the queue because of the end of
waiting period.

function Usage: extended;

Returns arelative part of the time when the queue wasin use.

function ZeroEntries: |ongint;
Returns the number of transaction entries into the queue, when the queue was empty.
Events
property OnEnter: TOnEnter ToBl ock;

See 3.3. TBlock. If you want to limit the waiting time in the queue, do this by processing this
event with the help of NextTime method.

property OnExit: TOnExitFronBl ock;

See 3.3. TBlock.

property OnRouting: TOnRoutingEvent;

See 3.3. TBlock
TOnTi meFi ni sh = procedur e(Sender: TBI ock; /I This queue
Trans: TTransaction) // Thetransaction whosetimeisfinished
of object;

property OnTi nmeFi ni sh: TOnTi meFi ni sh;

This event occurs when admissible latency period for the transaction is finished. We call this
moment “ activation of the queue’. Here you can determine what will happen further with the
transaction. One of aternativesisto pass the transaction to another block. If youdo n't passthe
transaction to another block, or if you don’t handle this event at all, the transaction will be
terminated.

Programmer’s Guide 17

4.6. T Stack

Declaration

TSt ack = cl ass(TQueue)
Purpose

This component simulates simple LIFO queue. It handles transactions in accordance with the rule
“Last input —first output”. Besides, this component repeats all properties, methods and events of TQueue.

Programmer’s Guide 18

4.7. TQueuePrty

Declaration

TQueuePrty = cl ass(TQueuePrtyCust onm
Purpose

TQueuePrty differsfrom TQueue by the discipline of transaction keeping. It keepsthemin
accordance with the rule” Firstinput — first output inits priority level” . So, the transactions with higher
priority will leave the queuefirst.

Another distinguishing feature of TQueuePrty isthefollowing. Let’simagine that the queueisfull,
i.e. the number of transactions is equal to the queue capacity, and atransaction triesto enter into the
gueue. Assume that this transaction has preemptive priority with the level higher than the lowest priority
of transactionsin the queue. In this case high -priority preemptive transaction will displace the lowest -
priority transaction. This operationis called preempting. Preempted (displaced) transactions may be
passed to the other blocks or terminated depending on handling procedure of OnPreempt event.
Properties

property Capacity: |ongint;

See 3.5. TQueue

property Preenptive: bool ean;
The preempting is possibleif PreemptiveisTrue.
M ethods
function AverageCount: extended;
See 3.5. TQueue
function AverageTi me: extended,;
See 3.5. TQueue
function Count: |ongint;
See 3.3. TBlock
function DeviationTi ne: extended;
See 3.5. TQueue
function |sReadyToReceive(Trans: TTransaction): bool ean;

Returns Trueif the queueis* Ready to Receive” transaction Trans. It takes place in the following
Cases:
- Thecapacity is unlimited,
- Thenumber of transactions in the queue isless then its capacity;
Entering transaction pointed by Trans has preemptive priority higher than the priority
of at least one transaction in the queue.

Programmer’s Guide 19

function MaxCount: | ongint;

See 3.5. TQueue

procedure Next Ti me(ActivationTine: real);

See 3.5. TQueue

function PreenptExits: |ongint;
Returns the number of transactions, which have abandoned the queue due to priority preempting.
function SAverageTi ne: extended;

See 3.5. TQueue

function SDevi ati onTi ne: extended;
See 3.5. TQueue
function TineLim tExits: |ongint;

Returns the number of transactions, which have abandoned the queue because of the end of
admissible waiting period.

function Usage: extended;

See 3.5. TQueue

function ZeroEntries: |ongint;

See 3.5. TQueue

Events
property OnEnter: TOnEnter ToBl ock;

See 3.3 TBlock, 3.5 TQueue

property OnExit: TOnExitFronBl ock;

See 3.3. TBlock
TOnPreenpt = procedure(Sender: TBI ock; /I This queue
Trans: TTransacti on) /I Preempted transaction
of object;

property OnPreenpt: TonPreenpt;

Handling this event, you can determine what will happen with the preempted low -priority
transaction. Y ou can pass preempted transaction to another b lock. If you don't passthe
transaction or if you don't handle this event at all, the transaction will be terminated.

property OnRouting: TOnRoutingEvent;
See 3.3. TBlock
property OnTi meFi ni sh: TOnTi meFi ni sh;

See 3.5. TQueue

Programmer’s Guide 20

4.8. TServer

Declaration

TServer = cl ass(TProQueue)
Purpose

TServer simulates a serving process. In every moment of time only one transaction can be served.
The transaction is being served during the time defined by NextTime method in the procedure of handling
OnEnter event.

As TQueuePrty component, TServer can handle preempting. Preemptive high -priority transaction
preempits the service of low -priority transaction. The preempted transaction may be passed to another
block or terminated. Thethird alternative isthat the serving preempted transaction may be postponed.
When a high-priority transaction leaves the server, the postponed transaction will be reset on serving for
therest of servicetime. The server can store only one postponed transaction per priority level. Postponed
transactions are kept in the stack ordered by priority. Note, there is a difference between the number of
transactions which is being served (may be 0 or 1) and the number of transactionsin the server (may be
equal up to number of priority levelsinyour model).

Properties
property Preenptive: bool ean;
The preempting is possibleif PreemptiveisTrue.
Methods
function AverageCount: extended;
Returns the average number of transactionsin the server.
function AverageTi me: extended,;
Returns the average time spent by transactions in the server.
function Count: |ongint;
See 3.3. TBlock
function DeviationTine: extended;

Returns the deviation of time spent by transactionsin the server (including the time of
postponing).

function |dleForExit: bool ean;

Returns Trueif the current transaction in the server is already served. In this case the transaction
isjust standing idle to exit.

Programmer’s Guide 21

function |sReadyToReceive(Trans: TTransaction): bool ean;
Returns Trueif the server is* Ready to Receive” transaction Trans. It takes placein the following
Cases:.
- Theserver isempty;

- Theentering transaction pointed by Trans has preemptive priority higher than the
priority of the transaction, which is served.

functi on MaxCount: | ongint;
Returns the maximal number of transactions in the server.
procedure Next Ti me(ActivationTine: real);

Sets the service time for the transaction entering into the server. The servicetimeis equa to
ActivationTime. Use this method while handle OnEnter event.

procedur e Post pone;

Postpone the service of preempted transaction. Use this method only handling OnPreempt event.
function PreenmptExits: |ongint;

Returns number of transactions, which have abandoned the serve r dueto priority preempting.
function Usage: extended;

Returns arelative part of the time when the server wasin use.

Events
property OnEnter: TOnEnter ToBl ock;

See 3.3. TBlock. The event occurs when transaction entersinto the block. It'sthetimeto define
the servicetime using NextTime method.

property OnExit: TOnExitFronBl ock;

See 3.3. TBlock
TOnPreenpt = procedur e(Sender: TBl ock; I/l This server
Trans: TTransaction) /I Preempted transaction
of object;

property OnPreenpt: TonPreenpt;
Handling this event, you can determine what will happen with the preempted low -priority

transaction. Y our can pass tran saction to another block or postponeits service. If you don't do it
or if you don’'t handle this event at al, the transaction will be terminated.

property OnRouting: TOnRoutingEvent;

See 3.3. Thlock

Programmer’s Guide 22

49. TStorage

Declaration

TSt orage = cl ass(TQueueCust om
Purpose

TStorage may be described as a server able to serve several transactions simultaneously. Itis
necessary to notice, that TStorage does not support preempting.

Properties
property Capacity: |ongint;

Capacity is the greatest possible number of transactions, which could be served in the storage. If
the number of transactionsis equal to capacity, the storageis“ Not Ready to Receive”. If
Capecity is equal to 0, the possible number of transactions in the storage is unlimited.

Methods
function AverageCount: extended;

Returns the average number of transactions in the storage. Y ou can determine the averagefilling
of the storage as aratio of AvarageCount to Capacity.

function AverageTi me: extended,;
Returns the average time spent by transactions in the storage.
function Count: |ongint;

See 3.3. TBlock

function DeviationTine: extended;
Returns the deviation of time spent by transactions in the storage.
function |sReadyToReceive(Trans: TTransction): bool ean;

Returns Trueif the storageis” Ready to Receive’ transaction Trans. The function returns True if
the Capacity is 0 or the number of transactionsislessthan Capacity.

function MaxCount: | ongint;
Returns the maximal number of tran sactions in the storage.
procedure Next Ti me(ActivationTine: real);

Setsthe service timefor the transaction entering the storage. Use this method handling OnEnter
event.

function Usage: extended;

Returns the relative part of time when the storag ewasin use.

Programmer’s Guide

23

Events
property OnEnter: TOnEnter ToBl ock;

The event occurs when transaction entersinto the storage. It’' s the time to define the service time
by use of NextTime method.

property OnExit: TOnExitFronBl ock;
See 3.3. TBlock

property OnRouting: TOnRoutingEvent;

See 3.3. TBlock

Programmer’s Guide 24

4.10. TStoragePrty

Declaration

TStoragePrty = cl ass(TQueuePrtyCustom
Purpose

Additionally to the possibilities of TStorage, this component supports priority preempting. The
preempting in TStoragePrty is similar to preempting in TQueuePrty and TServer. In contrast to
TServer, it does not support the postponed service.

Properties
property Capacity: |ongint;
See 3.9. TStorage
property Preenptive: bool ean
The preempting is possibleif PreemptiveisTrue.
M ethods
function AverageCount: extended

See 3.9. TStorage

function AverageTi me: extended,;

See 3.9. TStorage

function Count: |ongint;

See 3.3. TBlock

function DeviationTi ne: extended

See 3.9. TStorage

function |sReadyToReceive(Trans: TTransaction): bool ean

Returns Trueif the queueis* Ready to Receive” transaction Trans. The function returns Truein
the following cases:
- Thecapacity is unlimited,
- Thenumber of transactionsin the storageis less then its capacity;
- Theentering transaction pointed by Trans has preemptive priority higher than
priority of the transaction, which is being served.

function MaxCount: | ongint;

See 3.9 TStorage

Programmer’s Guide 25

procedure Next Ti me(ActivationTine: real);
See 3.9. TStorage
function PreenptExits: |ongint;

Returns the number of transactions, which have abandoned the storage due to priority
preempting.

function Usage: extended;

See 3.9. TStorage

Events
property OnEnter: TOnEnter ToBl ock;

See 3.3. TBlock, 3.9. TStorage

property OnExit: TOnExit FronBl ock;

See 3.3. TBlock
TOnPreenpt = procedure(Sender: TBI ock; /I This storage
Trans: TTransaction) /I Preempted transaction
of object;

property OnPreenpt: TonPreenpt;

Handling this event, you can determine what will happen with the preempted low -priority
transaction. Y ou can pass preem pted transaction to another block. If you don't passthe
transaction or if you don't handle this event at all, the transaction will be terminated.

property OnRouting: TOnRoutingEvent;

See 3.3. TBlock

Programmer’s Guide

26

4.11. TTerminator
Declaration
TTerm nator = cl ass(TBI ock)
Purpose
Transactions enter into this block to be terminated. When you handle OnEnter event, the transaction

isstill accessible and you have a possibility to get some information about it. TTerminator is aways
“Ready to Receive’.

Events
property OnEnter: TOnEnter ToBl ock;

See 3.3. TBlock.

Programmer’s Guide 27

4.12. TDivider

Declaration

TDi vi der = cl ass(TBl ock)
Pur pose

Splitsthe arrived transaction into severd transactions. The new transactions have the same priority
and ahility to preempt just astheir parent. When divider emits transactions, parent transaction goes last.
Thisblock is“ Ready to Receive” and “ not Ready to Give” if itisempty. If itisnot empty, itis
“not Ready to Receive’ and “ Ready to Give”.

With the purpose of routing you may need to distinguish parental and generated transactions. Y ou
can do this by handling OnExit or OnRouting events. If TDivider.Count returns 1, it's a parental
transaction.

M ethods
function | sReadyToRecei ve(Trans: TTransacti on): bool ean;
See 3.3. TBlock
Properties
property Capacity: |ongint;
The number of the output transactions obtained in the outcome of splitting.
Events
property OnEnter: TOnEnter ToBl ock;

See 3.3. TBlock
property OnExit: TOnExitFronBl ock;
See 3.3. TBlock

property OnRouting: TOnRoutingEvent;

See 3.3. Thlock

Programmer’s Guide 28

4.13. TAssembler

Declaration

TAssenbl er = cl ass(TBI ock)
Purpose

TAssembler assembles severa arrived transactions into one. Actually, the first entering transaction
remains aive. Therest of the transactions will be terminated.

Thisblock is“ Ready to Receive” and “ not Ready to Give’ until the resulting transaction is assembl ed.
When transaction is assembled, TAssembler is“ not Ready to Receive” and “ Ready to Give”.

Properties
property Capacity: |ongint;
Sets the number of the input transactions necessary to obt ain the assembled transaction.
M ethods
function | sReadyToRecei ve(Trans: TTransacti on): bool ean;
See 3.3. TBlock
Events
property OnEnter: TOnEnter ToBl ock;
See 3.3. TBlock
property OnExit: TOnExit FronBl ock;
See 3.3. TBlock
property OnRouting: TOnRouti ngEvent;

See 3.3. Thlock

Programmer’s Guide 29

4.14. TCreator

Declaration

TCreator = class(TBl ock)
Purpose

Creates the transactions on demand. After creation of transactions the componentis “ Ready to Give’
aslong as transactions are being emitted. In acombination with TScheduler you can simulate the
generator, which produces portions of the transactions.

M ethods

procedure Generate(Nunber: |ongint);

Immediately generates Number transactions and order the next activation time equal to 0. Thus,
after the generation simulation manager immediately tries to move generated transactions
through the model.

Events
property OnAfterCGeneration: TonAfterGenerationEvent;

The event occursright after generation of transaction. It' s agood time to set the transaction
propertieslike priority, preemptive property or fields defined by user. (See 3.4. TGenerator.)

property OnExit: TOnExitFronBl ock;
See 3.3. TBlock

property OnRouting: TOnRoutingEvent;

See 3.3. TBlock

Programmer’s Guide 30

4.15. TGate
Declaration
TGate = cl ass(TBI ock)
Purpose
Thisblock isasimple gate. Y ou can lock, unlock and inversethe gate. If gateisunlocked it works

like simple server with zero servicetime. By locking the gate you discontinue promoting of the
transactions that go through it.

M ethods
procedure I nverse
Locksthe gateif it isunlocked and vice -verse.
function IsLocked: bool ean;

Returns Trueif the gate islocked and vice -verse.

procedure Lock;

Setsthe gateinto the“ not Ready to Receive’ state. If there is transaction in the gate in the locking
moment, this transaction will leave the gate whenever it will be possible.

procedure Unl ock;
Unlocksthe gate.

Events
property OnEnter: TOnEnter ToBl ock;
See 3.3. TBlock
property OnExit: TOnEitFronBl ock;
See 3.3. TBlock

property OnRouting: TOnRoutingEvent;

See 3.3. Thlock

Programmer’s Guide 31

4.16. TTabulator

Declaration

TTabul at or = cl ass(TConponent)

Purpose

This component is not an aggregate. It is designed for statistical purpose sonly. If you need to build
histogram of some output parameter, this component helps you to calculate the hits of its valuesin
numerical intervals. Beside that, TTabulator calculates the average value of the parameter and its standard
deviation.

Properties
property Interval: real;
Width of anumericd interval.
property Interval Count: byte;
Number of intervals. The range of a dmissible valuesis from 2 to 254.

property LowerBound: real;

Lower bound of thefirst interval.
M ethods

function Count: |ongint;
Returns the total number of tabulated values.
function Deviation: real;
Returns the standard deviation of tabulated values.
function Hits(lndex: byte): |ongint;
Returns the number of hitsin Index interval. If Index isegual to 0, the function returns the

number of hitslower than LowerBound. If Index isequal to IntervalCount+ 1, the function
returns the number of hits higher than the upper bound of the last interval.

function Mean: real;

Returns the average value of tabulated values.
procedure PutVal ue(Val ue: real);

Inputs value for tabulation.

procedure Resets;

Resets all accumulated data.

Programmer’s Guide 32

4.17. TMultiRand

Declaration

TMul ti Rand = cl ass(TConponent)
Purpose
This component is intended to generate random variates of different distributions.
Properties

The basement for obtaining all distributions is uniform distribution from 0 to 1. The prime
modulus multiplicative congruential random number generator (P MMCG) is used to obtain uniformly
distributed values. The algorithm of PMMCG is the following.

MODULUS: = 2147483647, /1 27311
Seed: = (Multiplier * Seed) npd MODULUS;
Resul t: =Seed / MODULUS;

property Seed: conp;

This property setsthe initial seed for PMMCG. Thevaueof Seed should bein therange from
210 2147483646. The default value is 17000000000.

property Multiplier: conp;

This property sets the multiplier for PMMCG. Thevalue o f Multiplier should beintherange
from 2 to 2147483646. The default value is 950706376.

Fishman and Moore (1986) recommend the best values of Multiplier.

950,706,376
742,938,285
1,226,874,159
62,089,911
1,343,714,438

M ethods

functi on Bet a(ShapeAl pha: real; ShapeBeta: real;
Lower Bound: real; UpperBound: real): real;

Returns Beta distributed variates with the following paramet ers and limitations.

ShapeAlpha — a-shape, ShapeAlpha > 0;

ShapeBeta — b-shape, LowerBound > 0;

LowerBound — Lower bound of distribution, LowerBound >=0;

UpperBound — Upper bound of distribution, UpperBound >0, LowerBound <= UpperBound.

Method: Transformation of random variates where sample from Beta distribution is some ratio
of two Gamma-distributed samples[4].

Programmer’s Guide 33

function Ganma(Mean: real; Alpha: real): real;

Returns Gamma-distributed variates.

Mean — the mean of distribution, Mean >=0;
Alpha - the a-shape parameter, Alpha > 0.

Method: For a<1, Jonk’s method isused [7]. For a>1 the function uses combination of Gamma
distribution for a<1 and Erlang distribution. This method is suggested by Valeria Derevenskaya,

function Erlang(Mean: real; M integer): real;

Returns variates with Er lang distribution. Distribution has the following parameters.

Mean — the mean of distribution, Mean >= 0;
M — the shape parameter, M > 0.

Method: Summarizing M exponential variates, each of them is exponentially distributed with the
mean equal to Mean/M [7].

function Exponential (Mean: real): real;

Returns variates exponentialy distributed with the mean Mean, where Mean >= 0.

Method: Inverse transfomation [7].

function Lognormal (Mean: real; Deviation: real): real;

Returns variates with lognormal distribution. Mean and Deviation parameters are the mean and
standard deviation of the distribution; both parameters should be greater than 0.

Method: For the equation L=exp(N), if N isnormal distributed var iates then L islognormal
distributed [2].

function Normal (Mean: real; Deviation: real): real;

Returns variates with normal distribution. The mean and standard deviation of the variates are
set in the parameters Mean and Deviation; both parameters should be greater than O.

Method: Transformation of random variables with a selective truncation was used for obtaining
normal variates[1,3].

procedure Reset;

Resets the component into initial state. It sets Seed into initially assigned value and resets some
internal triggers.

Programmer’s Guide 34

function Triangular(Mn: real; Mde: real; Max: real): real;
Returns value with triangular distribution. Distribution has the following parameters.

Min —minima value, Min >=0.0;
Max — maximal value, Max >= 0.0;
Mode — mode of distribution, Mode >= 0.0, Min <= Mode <=Max.

Method: I nverse transformation [6].

function Uniforn(LowerBound: real; UpperBound: real): real;

Returns variates uniformly distributed between LowerBound and UpperBound.
Both parameters should be equal or greater than 0 and Lower Bound <= UpperBound.

function Wei bull (Al pha: real; Scale: real): real;

Returns variates with Weibull distribution, which has the following parameters.

Alpha — shape, Alpha>0
Scale—scde, Scale>0

Method: Inverse transfomation [5].

References

1. Ahrens, JH. and U.Dieter, “ Computer Methods for Sampling from the Exponential and Normal
Digtributions’, Comm. ACM, Vol. 15, 1972, pp. 873-882.

Aitchison, J. and J.A.C. Brown, The Lognormal Distribution, Cambridge Press, 1957

Box, G.E.P. and M.A.Miller, “ A Note on the Generation of Random Normal Deviates’, Annals of
Math Stat., Vol. 29, 1958, pp. 610-611.

Fishman, G.S., Principles of Discrete Event Smulation, John Wiley, 1978.

Hahn, G.J. and S.S.Shapiro, Satistical Modelsin Engineering, John Wiley, 1967

Pritsker, A.A.B., The GASP |V Smulation Language, John Wiley, 1974

Pritsker, A.A.B., Introduction to simulation and SLAM |1, John Wiley, 1984

wn

No ok

Programmer’s Guide

35

How to contact Softland?

If you have any questions or comments, please, feel free to contact us.

e-mail: german@rivne.com
Web: http://www.softland.rv.ua or http://www.softland.rovno.ua
Address: Softland
Soborna Strest, 1
Rivne
Ukraine 33028
Tel: +380 362 261570

Fax: +380 362 265441

