Discrete-event simulation system

Delsi

Verson 1.1

Copyright © 1998-1999 Softland (Rivne, Ukraine)

Getting Started

Rivne 1999

Getting Started

INTRODUCTION & CONTENTS

Consideration of concrete examplesis the best way to study Delsi. This document contains the
comments to 19 simulation applications developed in Delphi 3.0™ using Delsi components. Going from
the first to the nineteenth sample you will get step-by-step explanation of the most common aspects of
Delsi simulation.

Sample 1. Barber shop. The Smplest MOde! ..o e 3
Sample 2. Input parameters and ProgreSS SEAIUSvvveveenven e e ee e et e e ee e aen e aeaa 4
Sample 3. Clearing statistics during SImuUlation FUNoe i e e e e 5
Sample 4. Experiments with changing Parameterst vuiee e e e eeae 6
SAMPIE 5. TTBCING ...ttt e e e e e et et e e e e e et e 7
Sample 6. Limited queue capacity and FOULINGoviuie et e v eenen 8
Sample 7. Limited waiting inthe QUEUE ... e e e 9
Sample 8. Changing the parameters during SMUIELION FUNovieie i 10
Sample 9. Using TCreator COMPONENT eutteeee et e een et e e e et e ee e e enene s 11
Sample 10. USing TSIOrage COMPONENT vuuu et et et et e eei e e e e e s e e e ea e 12
Sample 11. Failures and recovering. TGate component. Method TServer.Release 13
Sample 12. Routing that depends on the state of blocks. Transaction fields. Tabulation 14
Sample 13. TDivider and TASSEMDIE ... e 17
Sample 14. Using priorities with TQUeUEPIty COMPONENTvvire it 18
Sample 15. Preempted and POStPONE SEIVICE e et e it et e e e et e 19
Sample 16. Passing preempted |ow-priority transaCtionsoovveveiiieiiiienie e eeeeen 20
Sample 17. Preempting in TQUEUEPTLYt ettt e et et e et e e e e eeees 21
Sample 18. Preempting in TOTAgEPTLY ue ittt et e e e e e e e e 23

Sample 19, MUITIPIE FOIMMSo e e e e e e e e e e e 24

Getting Started

Sample 1. Barbershop. The Simplest model

This example isthe first in the well-known Red Book of Thomas J. Schriber "Simulation
Using GPSS". Let's imagine a barbershop with one barber and the hall for waiting customers.
Customers arrive to the shop. If the barber is busy they wait in the hall. They go for the service with
discipline "First come - first served" (FIFO). After service they go away.

We can describe arrival and service time intervals with help of probability distributions.
These are input parameters for our model.

The arrival time is uniformly distributed in the range 12...24 min.
The service time is uniformly distributed in the range 14...20 min.
Thetotal time of smulation is 480 min.

We are interested to determine the following values:

Usage of the barber

Average queue length

Maximal queue length

Average waiting time

Deviation of waiting time

Average waiting time for transactions with zero time spent in the queue
Deviation of waiting time for transactions with zero time spent in the queue

The components for the building model:

Entrance TGenerator Arrivas of customers

Hall TQueue Waiting for service with FIFO discipline
Barber TServer Serving by barber

ExitDoor TTerminator L eaving the barbershop

For more simplicity we output results into TMemo component. Actually, you can output the
results wherever you want: to ASCI| file, database, canvas, QuickReport, HTML, etc.

To make the model ready for the new simulation start-up we use TModel.Reset method:

procedure TForml. Buttonld i ck(Sender: TChject);
begi n

Model . Reset ;
end;

The results of smulation are the following.

Usage of the barber: 0,92

Aver age queue |ength: 0,07

Maxi mal queue length: 1

Average waiting time: 1,33

Devi ation of waiting tine: 1,82

Average waiting time / excluding zero tinmes: 3,03
Devi ation of waiting tinme/ excluding zero tinmes: 1,56

Getting Started

Sample 2. Input parameters and progress status.

This sample isinteresting by the editing of input parameters and using progress status line.
We repeat model scheme of Sample 1. The arrival and service intervals are exponentially distributed.
We edit input parameters and simulation time with help of TEdit components.

For viewing simulation progress we use TProgressBar component.
For changing TProgressBar.Position property we use the event Model.OnNewTime.
This event isinitialized when new model time is taken from the List of Future Events.

The source code for event handling is the following.

procedure TForml. Mbdel NewTi me(Sender: TAggregate; Trans: TTransaction);
var NewPos: integer;
Ratio: real;

begi n

Rat i o: =Mbdel Ti ne/ Si nili ne;

if Ratio>1.0 then Ratio:=1.0;

NewPos: =Round(Rat i 0*100. 0) ;

with ProgressBar do

i f Position<>NewPos then Position: =NewPos;

end;

If you want to use the same sequence of random numbers in each simulation run, do it with help
of TMultiRand.Reset method.

Getting Started

Sample 3. Clearing statistics during simulation run

This sample demonstrates the possibilities to clear statistics during simulation run. It may be
useful when you want to define the transient of output parameter.

We use OnPlanned event of TScheduler component for:

printing results into Memo
clearing statistics
ordering the next event for TScheduler

The source code for event handling is the following.

procedure TForml. Schedul er 1Pl anned(Sender: TAggregate);
begi n
Meno. Li nes. Add(' Avarage time in the queue: '+
For mat Fl oat (' 0. 000", Hal | . Aver ageTi ne) +' '+
For mat Fl oat (' 0. 00", Model Ti ne)) ;
Model . d ear Stati stics;
Sender . Next Ti ne(d ear Ti ne) ;
end;

The arrival and service time are uniformly distributed.

The example of simulation results is the following.

Average time in the queue: 2,735 10000, 00
Average time in the queue: 2,500 20000, 00
Average time in the queue: 2,094 30000, 00
Average time in the queue: 2,070 40000, 00
Average time in the queue: 2,348 50000, 00
Average time in the queue: 2,430 60000, 00
Average time in the queue: 2,140 70000, 00
Average time in the queue: 2,525 80000, 00
Average time in the queue: 2,431 90000, 00
Average time in the queue: 2,804 100000, 00

Getting Started

Sample 4. Experiments with changing parameters

This sample demonstrates the possibilities of experiment management. In this sample the arrival
and service time are exponentialy distributed. The mean of service time is 10.0. The mean of arrival time
changes from 10.0 to 15.0 with step 1.0.

We need to estimate how the average queue length depends on the average arrival time.

The source code of experiment management:

Arrival Ti ne: =10. 0;
Servi ceTi ne: =10. 0;

Meno. Li nes. C ear;
for i:=0 to 5 do
begi n
Model . Si mul at e(Li mi t Ti ne) ;
Meno. Li nes. Add(' Average arrival time' +FormatFl oat('0.00"', Arrival Tinme)+
Aver age queue |length: '+
For mat Fl oat (' 0. 00", Hal | . Aver ageCount));

Model . Reset ;
Arrival Time: =Arrival Ti ne+1. 0;
end;

The results of experiment for simulation time 1000.0

Average arrival ti
Average arrival ti
Average arrival ti
Average arrival ti
Average arrival ti
Average arrival ti

10, 00 Aver age queue | ength: 6,88
11,00 Average queue |length: 2,43
12, 00 Aver age queue length: 3,12
13, 00 Average queue length: 1,06
14, 00 Aver age queue |length: 1,07
15, 00 Aver age queue |length: 0,63

CEEEEE

Getting Started 7

Sample 5. Tracing

In this sample we repeat the model of Sample 1. The only thing we demonstrate here is how to
trace the simulation process. To trace the transaction passing from one block to another we use the event
OnAfter Pass of TModel component.

The source code of event handling is the following.

procedure TForml. Model Aft er Pass(Sender, Receiver: TBlock; Trans: TTransaction);
begi n

Meno. Li nes. Add(PadCh(Sender. Nane, "' ', 12)+ /1 Name of Sender
PadCh(Recei ver. Nane, ' ',12)+ /1 Name of Receiver
PadCh(Int ToStr(Trans. GetTranslD),' ',6)+ // Transaction ID
For mat Fl oat (' 0. 00", Model Ti ne)) ; /1 Systemtinme
end;

The result of tracing looks like this:

Entrance Hal | 1 0, 00

Hal | Bar ber 1 0, 00

Bar ber Exi t Door 1 14, 50

Entrance Hal | 1 20, 49 /!l The second |life of Transaction 1
Hal | Bar ber 1 20, 49

Bar ber Exi t Door 1 34,79

Entrance Hal | 1 41, 89

Hal | Bar ber 1 41, 89

Bar ber Exi t Door 1 60, 08

Ent rance Hal | 1 64, 48 /!l The third life of Transaction 1
Hal | Bar ber 1 64, 48

Entrance Hal | 2 79, 40

Bar ber Exi t Door 1 80, 94

Hal | Bar ber 2 80, 94

Bar ber Exi t Door 2 96, 11

Entrance Hal | 2 96, 44 /!l The second |ife of Transaction 2
Hal | Bar ber 2 96, 44

Ent rance Hal | 1 112,58

From these results of tracing you can see that each transaction can be used severa times. It looks
like the transactions may have several lives per smulation run. But each transaction in each moment of
model time has unique ID.

By use of OnAfter Pass and OnNewTime events you can create more sophisticated tracing, for
instance, with the queue lengths, transaction priorities or something else. Of course, you can customize the
look and the kind of the output.

Getting Started 8

Sample 6. Limited queue capacity and routing

Let's take in consideration that number of chairsin the hal islimited. If the customer finds out
that al chairs are busy she goes to another barbershop.

The arrival timeis exponentially distributed with the mean equal to 11.0.
The service time is exponentially distributed with the mean equal t010.0.
We need to estimate the percentage of lost customers.

We define the capacity of queue in the property Capacity of TQueue component. Wecan doitin
Object Inspector or directly in source code just like in this sample.

Hal | . Capacity: =QCapaci ty;

If the number of transactions in the queue is equal to the capacity, the queue becomes not ready to
receive transactions. We use this fact for the routing transactions.

procedure TForml. EntranceRouti ng(Sender: TBl ock; Trans: TTransaction);
begi n
if Hall.isReadyToRecei ve(Trans) then
Sender . PassTo(Hal I)
el se
Sender . PassTo(Anot her Shop) ;
end;

After the simulation run it is very easy to calculate the percentage of lost customers.

Meno. Li nes. Add(' Percent of |ost customers: '+
For mat Fl oat (' 0. 00", Anot her Shop. Entri es*100. 0/ Entrance. Exits)+' %) ;

The example of sumulation results.

Capacity: 5

Total custoners: 8990

Lost custoners: 936

Percent of lost custoners: 10,41%

Getting Started

Sample 7. Limited waiting in the queue

In previous sample we discussed the queue with limited capacity. We repeat that sample with
some addition.

Usually, some of customers can not spend along time in the queue. Let's imagine that half of the
customers are not ready to spend in the queue more than 20 ... 30 min. (uniformly distributed). After this
period of time they leave the queue.

Asit wasin previous sample we need to calculate the percentage of lost customers.

To limit the waiting time for some customers we order the limiting time in the OnEnter event of
TQueue component.

procedure TForml. Hal | Ent er (Sender: TBl ock; Trans: TTransaction);
begi n
if MultiRand. Uniform(0.0,1.0) > 0.5 then /1 only half of customers can’t wait
Sender . Next Ti me(Mul ti Rand. Uni f or m(20. 0, 30.0));
end;

When the limiting time finishes, the event OnTimeFinish occurs. We process this event by passing
transaction into terminator NoTime.

procedure TForml. Hal | Ti neFi ni sh(Sender: TBl ock; Trans: TTransaction);
begi n

Sender . Pass(Anot her Shop) ; /1 Pass to termnator

end;

After simulation run we can calculate results.

Meno. Li nes. Add(' Total custoners: '+IntToStr(Entrance. Exits));
Meno. Li nes. Add(' Total anount of |ost customers: '+
I nt ToSt r (Anot her Shop. Entries));
Meno. Li nes. Add(' Lost custoners due to linmited tine waiting: '+
IntToStr(Hall. TimeLimtEXxits));

Meno. Li nes. Add(' Lost custonmers due to linmted capacity: '+
I nt ToStr (Anot her Shop. Entries-Hall. TineLi mtEXits));
Meno. Li nes. Add(' Percent of |ost custoners: '+FornmatFl oat('0.00",
Anot her Shop. Entri es*100. O/ Entrance. Exits) + %) ;

The example of simulation results.

Capacity: 5

Total custoners: 9084

Total anount of |ost custoners: 1465

Lost custoners due to limted time waiting: 1136
Lost custoners due to limted capacity: 329
Percent of |ost custoners: 16, 13%

Getting Started 10

Sample 8. Changing the parameters during simulation run

In this sample we repeat the model scheme of Sample 1. Let's take into consideration the fact that
arriva rate usualy is not the same al time of the day. We need to build model with this additional
condition.

Both arrival and service time are exponentially distributed.
The mean of servicetimeis 10.0.

We need to simulate barbershop with the following rate dependence.

Period (hrs) Period since opening (min.) Average arrival interval (min.)
8.00 - 10.00 0-120.00 14.0
10.00 - 12.00 120-240 12.0
12.00 - 15.00 240-420 10.0
15.00 - 17.00 420-540 12.0
17.00 - 20.00 540-720 14.0

To keep these values we use two arrays.

ChangeTine: array[1..5] of real = (0.0, 120.0, 240. 0, 420. 0, 540.0);
Arrival Means: array[1..5] of real = (14.0,12.0,10.0,12.0,14.0);

To change average arrival interval in defined moments of model time we use TScheduler component.

{Initializing first planned event}
procedure TForml. Schedul er 1Bef or eTi mneGoOn(Sender: TAggr egat e) ;
begi n
Sender . Next Ti me(0. 0); /1 The first planned event will occur at 0.0
end;

{Handl i ng pl anned event}

procedure TFor ml. Schedul er 1Pl anned(Sender: TAggregate);

begi n
TArrival : =Arrival Means[Counter]; /1 Setting the nmean of arrival tine
i f Counter<5 then
Sender . Next Ti me(ChangeTi me[Counter+1]); // Odering the next event

I nc(Counter);

end;

The results of smulation are the following.

Usage of the barber: 0,83

Aver age queue length: 2,16

Maxi mal queue length: 7

Average waiting tine: 22,67

Devi ation of waiting time: 19, 46

Average waiting time / excluding zero tines: 30,39
Devi ation of waiting time/ excluding zero tines: 16,53

Getting Started 11

Sample 9. Using TCreator component

Sometimes we need to generate transactions directly. In Delsi it is possible with the help of
TCreator component.

Let's imagine that before opening there are severa people waiting for service. We need to define
the output parameters that depend on the number of that people. Both arrival and service time are
exponentially distributed with means 10.0 and 11.0 accordingly.

To create transactions directly we use OnBeforeTimeGoOn event of Entrance component.

procedure TForml. Ent ranceBef oreTi meGoOn(Sender: TAggregate);
begi n
Sender . Next Ti ne(Mul ti Rand. Exponenti al (11.0));
i f Number O Peopl e>0 t hen
Peopl el nSt reet . Gener at e(Nunber O Peopl €) ; /1 Direct generation of transactions
end;

Actually, you can use any event for direct generation of transaction.

We route generated transaction to queue Hall.

procedure TForml. Peopl el nStreet Routi ng(Sender: TBlI ock; Trans: TTransaction);
begi n

Sender . Pass(Hal |);

end;

The results of simulation for 10 initially waiting clients are the following.

Usage of the barber: 0,90

Aver age queue |ength: 3,36

Maxi mal queue |ength: 11

Average waiting tinme: 32,26

Devi ation of waiting tinme: 20,69

Average waiting time / excluding zero tines: 35,79
Devi ation of waiting time/ excluding zero tines: 18,67

Getting Started 12

Sample 10. Using T Storage component

Let'sreturn for sample 7. We have the system with limited capacity of the queue and limited
waiting period in the queue. Let's assume that there are several barbers in the barbershop. The owner of
the saloon needs our help to decide how many barbers should work for him.

The arrival and service time are exponentially distributed.
The mean of arrival timeis 3.0

The mean of servicetimeis 10.0.

The hal capacity is 5.

To simulate several barbers we use TStorage components. We carry out experiments changing capacity of
storage Barbers.

Meno. Li nes. Add("' Bar bers Losses Usage of one barber');
for i:=1to 8 do
begi n

Bar bers. Capacity: =i;
Model . Simul ate(TLimit);

Meno. Li nes. Add(| nt ToSt r (Bar bers. Capaci ty) +' '+
For mat Fl oat (' 00. 00", (Anot her Shop. Entri es+NoTi me. Entries)*
100. 0/ Entrance. Exits) +' % o+

For mat Fl oat (' 00. 00", Bar bers. Aver ageCount *100. 0/
Bar bers. Capacity)+ %) ;

Model . Reset ;

end;

The results of simulation for ssmulation time 720.0

Bar ber s Losses Usage of one barber
1 69, 70% 100, 00%

2 41, 30% 97, 36%

3 23, 05% 93, 16%

4 11, 60% 81, 84%

5 04, 03% 75, 26%

6 00, 00% 50, 50%

7 00, 00% 49, 53%

8 00, 00% 45, 07%

Getting Started 13

Sample 11. Failuresand recovering. Component TGate. Method T Server .Release

Let's consider aworkshop, which consists of the box for details and machine tool. The details arrive
on handling on the machine tool from the box in LIFO order. After processing, details move to the another
ste.

From time to time machine tool breaks. The worker needs time for its recovering. After the breakage
of the tool the detail is removed from the machine tool and omitted in the box for further processing which
will take as much time as any other details in the box.

Both arrival and processing intervals are exponentially distributed with the mean values 2.0 and 1.5
min. The input parameters are the mean of the interval between tool failures and the mean of recovery
interval. These times are exponentially distributed. Another input parameter is time of simulation.

Before simulation run we unlock the Gate and plan the first failure using TScheduler component
Scheduler.

procedure TFor ml. Schedul er Bef or eTi meGoOn(Sender: TAggregate);

begi n

Gat e. Unl ock;

Sender . Next Ti ne(Mul ti Rand. Exponenti al (TFai l ure));
end;

During simulation we lock and unlock Gate using OnPlanned event of Scheduler. When we lock Gate, we
imitate removal of details by use of Release method.

procedure TForml. Schedul er Pl anned(Sender: TAggregate);
begi n
if Gate.islLocked then
begin
{ Unl ocking }
Sender . Next Ti me(Mul ti Rand. Exponenti al (TFail ure));
Gat e. UnLock;
end
el se
begin
{ Locking }
Sender . Next Ti ne(Mul ti Rand. Exponenti al (TRecovery));
Tool . Rel ease; /1l Removal of a details
Gat e. Lock;
end;
end;

We pass removed transaction back into the Box by the use of OnRelease event of the Tool.

procedure TForml. Tool Rel ease(Sender: TBl ock; Trans: TTransaction);
begi n

Sender . PassTo(Box) ;
end;

If there is atransaction in the gate after locking, we passit to bunker.

procedure TForml. Gat eRout i ng(Sender: TBl ock; Trans: TTransaction);
begi n
if Gate.islLocked then
Sender . PassTo(Bunker)
el se
Sender . PassTo(Tool) ;
end;

Getting Started 14

Sample 12. Routing that depends on the state of blocks. Transaction fields. Tabulation.

Let's imagine the bank with three cash desks. A visitor goes to the unused cash desk. If al cash
desks are busy she goes to the queue with minimal length. The arrival and service time are exponentialy
distributed. We need to calculate the mean, the deviation of the time spent in the bank and to build
corresponding histogram.

We route transactions to queues when they exit from generator Entrance.

procedure TForml. EntranceRouti ng(Sender: TBl ock; Trans: TTransPtr);
var Queuel D integer;

M nCount : | ongint;
begi n

i f (CashDeskl. Count=0) and (Queuel. Count=0) then
begi n

Sender . PassTo(Queuel);

Exit;
end;
i f (CashDesk2. Count=0) and (Queue2. Count=0) then
begi n

Sender . PassTo(Queue2) ;

Exit;
end;
i f (CashDesk3. Count=0) and (Queue3. Count =0) then
begi n

Sender . PassTo(Queue3) ;

Exit;
end;

{Choosi ng the queue with mnimal |ength}
M nCount : =Queuel. Count ;
Queuel D: =1;

i f Queue2. Count <M nCount then
begi n

M nCount : =Queue2. Count ;
Queuel D. =2;
end;

i f Queue3. Count <M nCount then
begi n

M nCount : =Queue3. Count ;
Queuel D:. =3;
end;

{Pass transaction to queue with mninmal |ength}
case Queuel D of
1: Sender. PassTo(Queuel);
2: Sender. PassTo(Queue2);
3: Sender. PassTo(Queue3);
end;
end;

Getting Started 15

How to determine the time spent in the bank? We need to store the birth moment of the
transaction when the transaction exits form generator. In order to have afield to store the birth time in the
transaction we need to declare new transaction class by inheriting of TTransaction class.

MyTransaction = cl ass(TTransacti on)
public

Birt hTi me: real;
end;

To tel internal simulation manager about the new declaration of transaction we use the method
TModel.SetTransactionClass before ssimulation run.

Model . Set Tr ansacti ond ass(M/Transacti on);
Model . Si nul at e(Li mi t Ti ne);

We store the value of birth time when handle the event TGenerator.OnExit.

procedure TForml. EntranceExit(Sender: TBl ock; Trans: TTransPtr);
begi n

Sender . Next Ti me(Mul ti Rand. Exponenti al (TArrival));

(Trans as MyTransaction). Birt hTi me: =Model Ti ne;
end;

When transaction reaches the terminator we calcul ate the difference between current model time
and the birth time. To obtain the mean, deviation and histogram we tabulate these values using TTabulator
component.

procedure TForml. Exi t Door Ent er (Sender: TBl ock; Trans: TTransPtr);
begi n

Tabul at or 1. Put Val ue(Model Ti me- (Trans as MyTransaction).BirthTi ne);
end;

After simulation run we output the information collected in the tabulator.

with Tabul atorl do

begi n
Meno. Li nes. Add(' The hi stogram of tine spending in the bank');
Meno. Li nes. Add(' Bel ow ' +For mat Fl oat (' 000. 00" , Lower Bound) +' : '+
IntToStr(H ts(0)));
for i:=1 to Tabul atorl.Interval Count do
begin
Meno. Li nes. Add(For mat Fl oat (' 000. 00' , Lower Bound+I nterval *(i-1))+ - '+
For mat Fl oat (' 000. 00' , Lower Bound+l nterval *(i))+' '+
IntToStr(H ts(i)));
end;
Meno. Li nes. Add(' Upper ' +For mat Fl oat (' 000. 00" , Lower Bound+
I nterval *I nterval Count) +': "+
Int ToStr(H ts(lnterval Count+1)));
Meno. Li nes. Add("' ")

Meno. Li nes. Add(' Average tinme in the bank: '+
For mat Fl oat (' 0. 00' , Tabul at or 1. Mean)) ;
Meno. Li nes. Add(' Deviation of time in the bank: '+
For mat Fl oat (' 0. 00", Tabul at or 1. Devi ati on));
end;

Getting Started

16

The example of the result output is the following.

The hi stogram of time spent in the bank
Bel ow 000, 00: 0

000,00 - 002,00 789

002,00 - 004,00 526

004,00 - 006,00 269

006,00 - 008,00 126

008,00 - 010,00 83

010,00 - 012,00 35

012,00 - 014,00 10

014,00 - 016, 00 0
016, 00 - 018, 00 0
018, 00 - 020, 00 0
Upper 020, 00: 0

Average tine in the bank: 3,09
Deviation of tinme in the bank: 2,60

Getting Started 17

Sample 13. TDivider and TAssembler

In this sample we consider the workshop. The details arrive to the workshop in boxes by batches
of 10 pieces. After processing on the machine tool they move to another box and move to another
workshop. The box arrival interval and processing time are uniformly distributed. It is necessary to build a
histogram of the box department interval. The input parameters are the lower and upper bounds of arrival
interval and processing time. One more input parameter is the smulation time.

We simulate box arriving by TGenerator component BoxArrival. To decompose “one box” into
“ten details’ we use TDivider component BoxToDetails with capacity 10. After processing on machine
tool (TServer component Tool) we compose every “ten details’ into “one box” by use of TAssembler
component DetailsToBox with capacity 10.

We build histogram with help of TTabulator component Tabulator 1.

procedure TFor ml. Anot her Wor kShopEnt er (Sender: TBI ock; Trans: TTransaction);
begi n

Tabul at or 1. Put Val ue(Model Ti me- Last Arri veTi ne) ;

Last Arri veTi me: =Model Ti ne;
end;

The result of simulation for arrival interval from 2.0 to 4.0 and interval of processing from 25.0 to 35.0

The hi st ogram of box departnent interva
Bel ow 020, 00: 1
020,00 - 021,00 O
021,00 - 022,00 O
022,00 - 023,00 O
023,00 - 024,00 20
024,00 - 025,00 99
025,00 - 026,00 228
026,00 - 027,00 349
027,00 - 028,00 338
028,00 - 029,00 335
029,00 - 030,00 335
030,00 - 031,00 341
031,00 - 032,00 313
032,00 - 033,00 333
033,00 - 034,00 321
034,00 - 035,00 213
035,00 - 036,00 95
036,00 - 037,00 20
037,00 - 038,00 O
038,00 - 039,00 O
039,00 - 040,00 O
Upper 040, 00: 0

Average output interval 29,93
Devi ation of output interval: 3,03

That isagood illustration for the theorem of large numbers.

Getting Started 18

Sample 14. Using prioritieswith TQueuePrty component

In this sample we are considering the dental clinic with several doctors. The patients may be
divided into two categories: regular patients and patients with tooth pain. The patients may form the
gueue. In that case patients with pain will go for the treatment first. So, we can say that they have higher
non-preemptive priority in the medical service.

The following parameters are known:

The arrival timeis exponentially distributed.

The mean of arrival time for regular patientsis 4.0 min.

The mean of arrival time for patients with tooth pain is 25.0 min.
The service time is uniformly distributed from 7.0 to 15 min.

We need to determine the average value and standard deviation of time spent in clinic for the both
categories of patients in dependence on the number of doctors.

By default, the priority of each new transaction is equal to 0. So, the generator Regular Patients generates
transaction with lower priority level.

We set the priority level for transactions generated by the generator ToothpainPatiens with help of
OnAfter Generation event:

procedure TForml. Toot hpai nPaci ent sAft er Gener ati on(Sender: TBl ock; Trans: TTransaction);
begi n

Trans. SetPrty(1); /1 Sets priority value into 1
end;

The TQueuePrty component handles transactions so that high-priority transactions will be placed
at the beginning of the queue. They will leave the queue first. Actually, there are two hidden internal FIFO
gueues inside the general queue. Generally, the number of the hidden queues is equal to numbers of
priority levels of transactions stored in that real queue. Each hidden queue stores transaction of some
priority level. If there are high-priority transactions in the queue, low priority transaction can leave the
queue only for the reason of limitation of waiting time.

The results of ssimulation for 3 doctors and simulation time 720.0:

1. Regul ar patients

Nurmber of patients: 155

The average time spent in clinic: 24,88

The deviation of time spent in clinic: 9,22
2. Patients with tooth pain

Nurmber of patients: 33

The average time spent in clinic: 12,99

The deviation of time spent in clinic: 3,36

Getting Started 19

Sample 15. Preempted and postponed service

In this sample we are considering the firm which executes some orders. There are two types of
orders: regular and urgent. The last one costs twice as much. When the firm executes regular order and
urgent order incomes to the firm, the firm preempts processing of regular order. After finishing urgent
order, the firm continues processing regular order. The following parameters are known:

The arrival and service times are exponentialy distributed.
The mean of arrival time of regular ordersis 5.0 days

The mean of arrival time of urgent ordersis 15.0 days
The mean of servicetimeis 3.5 days

Simulated time — 1 year (about 264 work days)

We need to determine the number and the average time of execution for both types of orders.

To solve thistask we use transactions with different priority levels. To be able to preempt service
in the server the high-priority transactions have to be preemptive. We set the priority level and its
preemptive ability in OnAfter Generation event.

procedure TForml. Urgent Or der sAft er Gener ati on(Sender: TBl ock; Trans: TTransPtr);
begi n

SetPrty(Trans, 1);

Set Preenpt (Trans) ;
end;

When high-priority transaction preempts the service of low-priority one, the server generates
OnPreempt event. (Do not forget to set server’s property Preemptive into True). Handling that event, we
postpone the service of preempted transaction with help of Postpone method.

procedure TForml. Processi ngPreenpt (Sender: TBlI ock; Trans: TTransaction);
begi n

Sender . Post pone;
end;

When high-priority transaction leaves the server, the last one continues processing of low-priority
transaction.

The results of smulation are the following.

1. Regul ar orders

Nunber of arrived orders: 44

Nunber of executed orders: 34

The average execution tinme: 21,95

The devi ation of execution tine: 16,59
2. Urgent orders

Nunber of arrived orders: 17

Nunber of executed orders: 17

The average execution time: 5,53

The devi ation of execution tine: 4,22

The average nunber of orders on processing: 1,12
The maxi mal nunber of orders on processing: 2
The | oading of firm O, 82

The average | ength of the queue: 2,84

The maxi nal | ength of the queue: 10

The cost of executed orders: 680000, 00

Getting Started 20

Sample 16. Passing preempted low-priority transactions

In this sample we consider another business strategy for the firm of Sample 15. When the
processing of regular order is preempted by urgent order, the firm gives that regular order to the company-
subcontractor. The input parameters and the task are the same like in the Sample 15.

By Handling OnPreempt event, we pass preempted transaction to another block.

procedure TForml. Processi ngPreenpt (Sender: TBlI ock; Trans: TTransaction);
begi n

Sender . PassTo(Subcontractor);
end;

The results of smulation are the following.

1. Regul ar orders

Nunber of arrived orders: 45

Nunber of executed orders: 25

The average execution tinme: 12,22

The devi ation of execution tine: 12,51
2. Urgent orders

Nunber of arrived orders: 17

Nunber of executed orders: 17

The average execution tine: 7,20

The devi ation of execution tine: 7,98
3. Orders passed to subcontractor

Nunber of orders: 13

The average nunber of orders in processing: 0,69
The maxi mal nunber of orders in processing: 1
The | oading of firm O, 685

The cost of executed orders: 590000, 00

Getting Started 21

Sample 17. Preemptingin TQueuePrty

In this sample we consider the third business strategy for the firm of Samples 15,16. According to
this strategy the firm limits the size of queue up to 3 orders. Urgent order may preempt the regular order
waiting in the queue. Also this strategy supposes preempting the processing.

Let’ simagine that firm process one order and keeps three other in the queue. We can consider two
variants of the new order arrival:

1. Thenew order isregular. In this case the firm passes the new order to a subcontractor.
2. Thenew order is urgent.
2a The queue contains three urgent orders. In this case new order will
be passed to the subcontractor.
2b: The queue contains at least one regular order. In this case urgent order will replace
the regular one. The replaced regular order will be passed to the subcontractor.

The preempting serviceis used as well.

We implement the first variant by handling of OnRouting event of RegularOrders generator.

procedure TForml. Regul ar O der sRout i ng(Sender: TBI ock; Trans: TTransaction);
begi n
i f Queue. | sReadyToRecei ve(Trans) then
Sender . PassTo(Queue)
el se
Sender . PassTo(Subcont ract or)
end;

We implement variant 2ain the same way.

procedure TForml. Urgent Or der sRout i ng(Sender: TBl ock; Trans: TTransaction);
begi n
i f Queue. | sReadyToRecei ve(Trans) then
Sender . PassTo(Queue)
el se
Sender . PassTo(Subcont ract or)
end;

In this procedure the function Queue.l sReadyToReceive(Trans) returns False only if the queue
contains three high-priority transactions, otherwise it returns True.

Considering the variant 2b, we can say that TQueuePrty is being preempted like a server. We pass
preempted transaction by handling OnPreempt event (Do not forget to set Preemptive property of
components Queue and Processing into True).

procedure TForml. QueuePr eenpt (Sender: TBl ock; Trans: TTransaction);
begi n

Sender . PassTo(Subcontractor);
end;

Getting Started

22

The results of smulation are the following.

1

Regul ar orders

Nunber of arrived orders: 44

Nunber of executed orders: 24

The average execution tinme: 11,40

The devi ation of execution tine: 10,52

Urgent orders

Nunber of arrived orders: 17

Nunber of executed orders: 17

The average execution tine: 4,55

The devi ation of execution tine: 3,86

Orders passed to subcontractor

Nunmber of orders: 17
Orders passed from queue: 2
O ders passed from processing: 10

The
The
The
The
The
The

average nunber of orders in processing
maxi mal nunber of orders in processing:

|l oading of firm 0,72

average |l ength of the queue: 1,0971
maxi mal | ength of the queue: 3

cost of executed orders: 580000, 00

Getting Started 23

Sample 18. Preemptingin T StoragePrty

In this sample we consider the forth business strategy for the firm of Samples 15,16,17.
This strategy is similar to the strategy of Sample 17 with preempting in TQueuePrty.

Let'simagine that firm is able to process severa orders simultaneously. One employee can
process one order. If there is at least one urgent order in the queue and one regular order is on processing,
the urgent order will replace the regular one, which is being processed. The replaced regular order will be
passed to a subcontractor.

We simulate the processing with TStoragePrty component. The value of Capacity is the number
of employees.

We pass preempted transaction to the block Subcontractor by handling of OnPreempt event of
TStoragePrty.

procedure TForml. Processi ngPreenpt (Sender: TBlI ock; Trans: TTransPtr);
begi n

Sender . PassTo(Subcontractor);
end;

The results of simulation for three employees are the following.

1. Regul ar orders

Nunber of arrived orders: 45

Nunber of executed orders: 30

The average execution tine: 12,58

The devi ation of execution tine: 8,79
2. Urgent orders

Nunber of arrived orders: 17

Nunber of executed orders: 16

The average execution time: 8,59

The devi ation of execution tine: 6,45
3. Orders passed to subcontractor

Nunber of orders: 11

The average nunber of orders in processing: 2,31
The nmaxi mal nunber of orders in processing: 3
The cost of executed orders: 620000, 00

Getting Started 24

Sample 19. Multiple forms

What should we do if we have so many components in the model that we can not place them on
one form? We should place them on several forms. Before simulation run the internal control subsystem
will gather al aggregates into one united model.

In this sample we place the blocks of the model on different forms.

On Form2: generator Entrance, queue Hall;
On Form3: server Barber, terminator ExitDoor.

If we pass transaction to the block of another form, we need to do it this way.

procedure TForn®. Hal | Routi ng(Sender: TBl ock; Trans: TTransaction);
begi n

Sender . PassTo(For nB. Bar ber) ;
end;

The same way we refer to MultiRand, which is placed in Form1.

procedure TFornR. EntranceExit (Sender: TBl ock; Trans: TTransaction);
begi n

Sender . Next Ti me(For nil. Mul ti Rand. Exponenti al (Arrival Time));
end;

When we implement output of results, we also refer to the blocks placed in other forms.

procedure TForml. Buttonld i ck(Sender: TChject);
begi n
{ Checking all input paranters }
Model . Si mul at e(Si nili ne) ;
Meno. Li nes. Add(' Usage of the barber:'+
For mat Fl oat (' 0. 00' , For nB. Bar ber. Usage)) ;
Meno. Li nes. Add(' Average queue length: '+
For mat Fl oat (' 0. 00", Forn2. Hal | . Aver ageCount));
Meno. Li nes. Add(' Maxi mal queue length: '+
I nt ToStr (Forn2. Hal | . MaxCount)) ;
Meno. Li nes. Add(' Average waiting tine: '+
Format Fl oat (' 0. 00", FornR2. Hal | . Aver ageTi ne)) ;
Meno. Li nes. Add(' Devi ation of waiting tine: '+
Format Fl oat (' 0. 00", Forn®. Hal | . Devi ati onTi ne));
Meno. Li nes. Add(' Average waiting time / excluding zero times: '+
For mat Fl oat (' 0. 00", Forn2. Hal | . SAver ageTi ne)) ;
Meno. Li nes. Add(' Devi ation of waiting tine/ excluding zero times: '+
Format Fl oat (' 0. 00", FornR. Hal | . SDevi ati onTi ne));
Model . Reset ;
Mul ti Rand. Reset ;
end;

Do not forget to define Uses clause in implementation part of the unit.
In Samplel9.pas: Uses Unit2, Unit3;

In Unit2.pas: Uses Sanpl el9, Unit3;
In Unit3.pas: Uses Sanpl el9;

