
Discrete-event simulation system

Delsi
Version 1.1

Copyright © 1999 Softland (Rivne, Ukraine)

Programmer's Guide

Rivne 1999

Programmer’s Guide 2

CONTENTS

Introduction … 3
Registration … 3
Installation … . 3
1. Simulation logic … . 4
1.1. Object of Delsi … 4
1.2. The main simulation algorithm … .. 6
1.3. Advantages of Delsi simulation logic … 7
2. Model time … .. 7
3. Transactions … 8
4. Delsi components … 9
4.1. TModel … 9
4.2. TScheduler … ... 11
4.3. TBlock … .. 12
4.4. TGenerator … ... 14
4.5. TQueue … 15
4.6. TStack … . 17
4.7. TQueuePrty … . 18
4.8. TServer … 20
4.9. TStorage … .. 22
4.10. TStoragePrty … . 24
4.11. TTerminator … ... 26
4.12. TDivider … 27
4.13. TAssembler … 28
4.14. TCreator … . 29
4.15. TGate … . 30
4.16. TTabulator … . 31
4.17. TMultiRand … 32
References … .. 34
How to contact Softland? … 35

Programmer’s Guide 3

INTRODUCTION

The main idea of Delsi modeling is that your queuing formalization may be performed as an oriented
graph with the nodes, which corresponds to some processing objects (such as generators, queues, servers
etc). The arcs of the graph correspond to streams of transactions. Some user algorithms may control
processing objects and transaction rou ting.

The simulation system is designed by use of object -oriented approach. The whole model and
processing objects (so called blocks) are implemented as Borland® DelphiTM components. The transactions
are implemented as objects.

The user algorithms are im plemented as a reaction on events such as entering block, routing, exit
from block and others. During the simulation process, transactions are being passed from one block to
another. By use of the methods and properties of components it is possible to cont rol behavior of the
model and obtain necessary statistical results.

From the end -user's point of view, Delsi allows him to use all the power of Delphi (GUI, OOP, and
components) as an environment for developing a wide variety of simulation models, impleme nted as end
products. Delsi, in combination with a standard PC and Delphi creates a non-expensive simulation
workplace for developing valuable applications.

REGISTRATION

After purchasing Delsi, please fill registration form at http:// www.softland.rv.ua/delsi/register.htm or print file
register.pdf , fill the form and send it to Softalnd. After registration you will get an opportunity for the
technical support, which include:

- free fixing updates
- free upgrade from Delsi for Delphi TM 3.0 to the same Delsi verion for Delphi TM 4.0 on your demand
- free downgrade from the Delsi for Delphi TM 4.0 to the same Delsi verion for Delphi TM 3.0 on your

demand
- free consultation concerning Delsi via e -mail (up to 3 messages per month and up -to 3 ours of our job

for answering) during one year since purchasing.
- information about new releases

Registered users may apply to Softland for developing new components. This wishes will be taken into
concideration. If the component suggested by user will be implemented, this user will receive it for free.
Softland do not promise to develope the components on your wishes or suggestions.

INSTALLATION

How to install Dels i?

- Extract delsi_*.zip into some directory, for instance, C: \DELPHI\DELSI
- Start Delphi
- Choose Componet|Install Packages
- Click “Add”
- For Delphi 3.0, type the full file name C: \DELPHI\DELSI\delsi.dpl
- For Delphi 4.0, type the full file nam e C:\DELPHI\DELSI\delsi.bpl
- Click “Open”
- Click “Ok”

You should have now a new page on your component palette called Delsi with new components.

Programmer’s Guide 4

1. SIMULATION LOGIC

1.1. Objects of model

Delsi is based on the Theory of aggregate models found in the beginning of 70’s by Ukrainian
Academician N.P.Buslenko. The basic unit of an aggregate model is Piecewise Linear A ggregate (PLA).

Aggregate is an abstract object, which functions in time. It is capable to perceive entering signals X,

to produce output signals Y and to be in each instant in a condition Z. The dynamics of PLA has an
"event" essence. Two key operations correspond to Delsi aggregates: activation and odering next
activation time.

There are two kinds of aggregates in Delsi: schedulers and blocks.

Scheduler is an aggregate, which just hanldes some user -processed event. It does not operate with

transactions.

Block is an aggregate which passes and receives transactions.

Each block is characterized by two states: Ready/not ready to receive transaction and Ready/not

ready to give transaction. These states are necessary conditions for transaction transfer . Generally, the
behavior of each block is described as a reaction to the followi ng events: OnEnter (transaction is entering
the block), OnRouting (the block is Ready to give and it needs to pass the exiting transaction to another
block), OnExit (transaction leaves the block during the pass). For some blocks there are additional
specific events which determine their behavior.

The inheritance of aggregates has the following structure.

TComponent
 Taggregate
 TScheduler
 TBlock
 TGenerator
 TProQueue
 TQueuePrtyCustom
 TQueuePrty
 TStoragePrty
 TServer
 TQueueCustom
 TQueue
 TStack
 TStorage
 TAssembler
 TDivider
 TCreator
 TGate
 TTerminator
 TModel
 TMultiRand
 TTabulator

Programmer’s Guide 5

Activation is an event initiated by changes of model time. The activation of scheduler is just initiating
user-processed event. For the generator, activation is the producing of a new transaction. For servers,
queues, storages it is the finishing of the waiting peri od for a certain transaction.

Oredering next activation time takes place during the handling of the certain aggregate events. For

example, when the transaction leaves the generator we order next activation time (the time interval till the
next generation) handling OnExit event. When transaction enters into the serv er or storage we order the
next activation time (the service time) by handling OnEnter event. During ordering next activation time
the record with the following fields will be inserted into the system calendar (List of Future Events):
Block, Trancastion/ nil, Activation Time.

FIFO rule of activation. If several aggregates should be activated at the same time they will be

activated with FIFO rule (First orderd - first activated).

 Transaction is a dynamic object, which moves through the fixed structure of blocks. They resemble
GPSS transactions but they can have an arbitrary structure.

 Delsi has the following limitation: One transaction may be only in one block at the same time.

Programmer’s Guide 6

1.2. The main simulation algorithm

The simulation logic is controlled by the main simulation algorithm, which is performed in pseudo -
programming language as show n below. The main cycle of the simulation algorithm scans the system
calendar. In the case of Delsi, the system calendar is called the List of Future Events (LFE). From
theoretical point of view LFE keeps the interior events of aggregates.

repeat
 Take the next element form the List of Future Events;
 ModelTime:=NewTime;
 Model.OnNewTime; // You can check what has happened
 If Aggregate is Scheduler then
 Activate(Scheduler)
 else
 begin
 Activate (Block, Transaction);
 Insert this Block into the List of Current Events;
 Using List of Current Events do all possible transaction passes;
 end;
until ModelTime<LimitTime;

List of Current Events (LCE) includes all blocks which are in the state Ready to Give.
Implementation of all possible passes is controlled by the following algorithm.

repeat
 for all blocks in the LCE do
 begin
 Block.OnRouting; // Pass transaction to another block
 if not Block.ReadyToGive then
 Remove Block from the LCE;
 end;
until at least one pass have been done;

The user can route the transaction in the routine of OnRouting event in the following way:

if Condition then
 ThisBlock.PassTo(Block1)
else
 ThisBlock.PassTo(Block2);

The procedure PassTo does the following:

if AnotherBlock.ReadyToReceive(PassedTransaction) then
begin
 ThisBlock.ExitFromBlock; // The transaction leaves this block
 ThisBlock.OnExit; // User-defined handling
 AnotherBlock.OnEnter; // User-defined handling
 AnotherBlock.EnterToBlock; // The transaction enters to another block
 Model.OnAfterPass; // User-defined handling
end;

Programmer’s Guide 7

1.3. Advantages of Delsi simulation logic

Main simulation algorithm does not know about transactions

As we have seen, the main simulation algorithm operates with states and events of blocks.

Transactions are generated, moved and terminated during different operations with blocks. The main
simulation algorithm knows almost nothing about the transactions. Thus, the speed of the main
simulation algorithm does not depend on the number of transa ctions in the system.

Direct access to transactions in the block

Independently of the number of transactions in the block, the search and removal of certain
transaction from the block is an one -step operation. Let's imagine the storage with 100,000 transactions
In some moment of the model time one of them has to be removed. The node of List of Future Events
stores the address of the transaction and address o f the storage. Because transactions are stored in the
storage in a bidirectional list, this particular transaction will be found and removed directly. That is why
the term of activation and exiting does not depend on the number of transactions in storage. The same rule
applies to queues with limited waiting time. Generally, for all blocks of Delsi there are no cycles during
entering, activation or exiting. So, the number of transactions in the model does not influence the
performance.

All time dependences are concentrated in LFE

The blocks place transactions independently of thier activation time. The List of Future Events is a
single data structure where all time dependences are maintained. In simulation systems with
intensive load, the length of LFE may reach hundreds of thousands of nodes. That is why LFE
maintenance plays such a decisive role in the performace. Delsi is designed in such way that I/O
performance of LFE has binary -logarithmic dependence on its length.

2. MODEL TIME

The model time is a time of model functioning. It is not physical time. Before simulation start -up and

after model reset the model time is equal to 0.

function ModelTime: real;

Returns current model time.

Programmer’s Guide 8

3. TRANSACTIONS

Declaration

TTransaction = class(TObject)

Methodes

procedure TTransaction.SetPrty(Prty: byte);

Sets priority level Prty for the transactioin

procedure TTransaction.SetPreempt;

Makes the transaction preemptive.

procedure TTransaction.SetNonPreempt;

Makes the transaction non -preemptive.

function TTransaction.GetPrty: byte;

Returns the priority of the transaction.

function TTransaction.IsPreempt: boolean;

Returns True if the transaction is preemptive. Otherwise returns False.

function TTransaction.GetTransID: longint;

Returns the transaction ID. IDs of all “alive” transactions are unique but newly generated
transaction may repeat the ID of terminated one.

Inheritance

It is very important that you can redefine TTransaction to obtain the new customized fields. For
instance,

 MyTransaction = class (TTransaction);
 public
 MyField1: integer;
 MyField2: real;
 end;

When you redefine TTransaction you have to inform the internal simulation manager about that
new redefinition. Do this by calling method TModel.SetTransactionClass before start of
simulation:

 Model.SetTransactionClass(MyTransaction);

When you need to use your own fields, do this in the following way.

procedure TForm1.EntranceExit(Sender: TBlock; Trans: TTransaction);
begin
 . . .
 (Trans as MyTransaction).MyField2:=ModelTime;
end;

Programmer’s Guide 9

4. Delsi COMPONENTS

4.1. TModel

Declaration

 TModel = class(TComponent)

Purpose

 TModel is a basic component, which is responsible for the whole model functioning. With help of
TModel we can start and stop simulation the process or clear statistics collected in blocks. One more
useful feature of TModel is the possibility of registration of transaction passes and fixing the moments of
time changes. There can be only one TModel component in an application.

Properties

property HeapSize: byte;

Before simulation start -up the application allocates a cut of memory. In HeapSize you can set the
size of allocated memory in Megabytes. The range of possible values is from 1 to 128. The
default value is 4.

property PageSize: integer;

All dynamic objects of Delsi, like transactions, elements of LFE and LCE are stored in memory
pages. This property sets the page size in bytes. The range of possible values is from 1024 to
32768. The default value is 1024.

Methods

procedure ClearStatistics;

Clears statistics of all blocks. As a rule, stationary stochastic systems pass a phase of transient in
their initial period of time. If the contributor wants to evaluate parameters of a system in its stable
state, the transitional process brings an error t o outcomes. We can cut off the errors by clearing
statistics after the transient phase.

procedure Reset;

This procedure resets the model into its initial state so, that it becomes ready for the next run.
Use this procedure when you need several simulati on runs with changing input parameters.

Procedure SetTransactionClass(TransClass: Tclass);

You need this method when you redefine class TTransaction to obtain your own customized
structure of transaction. Use this procedure before simulation run (i.e. be fore first calling
TModel.Simulate).

procedure Simulate(TLimit: real);

 Starts simulation run. The simulation will proceed until reaching a value TLimit by model time.

Programmer’s Guide 10

procedure Stop;

 Stops simulation run.

Events

TAfterPassEvent = procedure(Sender: TBlock; // sending block
 Receiver: TBlock; // receiving block
 Trans: TTransaction) // passed transaction
 of object;
 property OnAfterPass: TAfterPassEvent;

The event occurs after the transaction is passed from one block to another.

TBeforeModelGoOnEvent = procedure of object;
property OnBeforeTimeGoOn: TBeforeModelGoOnEvent;

 This event occurs before model running and before blocks’ events OnBeforeTimeGoOn.
So, it’s the first Delsi event at all.

TDeadlock = procedure of object;
property OnDeadlock: TDeadlock;

This event is initiated after detection of deadlock in the simulated system. Deadlock in Delsi
means the List of Future Events is empty.

TNewTimeEvent = procedure(Aggregate: Taggregate; // activated aggregate
 Trans: TTransaction) // nil or activated transaction

of object;
property OnNewTime: TNewTimeEvent;

The event occurs when model time changes the value. Parameter Aggregate refers to activated
aggregate (block or scheduler). Trans is the transaction, which should leave the block (server,
queue or storage). If the activated aggregate is a generator or sch eduler, Trans is equal to nil.

Programmer’s Guide 11

4.2. TScheduler

Declaration

 TScheduler = class(TAggregate)

Purpose

TScheduler is intended to initiate the events through some intervals of simulation time. We need it to
control the simulation process. By use of this event, the user can change the parameters of the model, stop
simulation run, clear statistics or lock/unlock gates.

Methods

procedure NextTime(ActivationTime: real);

Sets the time to the next activation.

Events

TBeforeTimeGoOnEvent = procedure(Sender: TAggregate) of object;
property OnBeforeTimeGoOn: TBeforeTimeGoOnEvent;

The event occurs before simulation run. We can use it to do any user -defined action before
simulation, for example, to initialize some parameters. This event is especially useful for planning
the first user -defined procedure used during simulation run. We plan the next event using method
NextTime.

TPlannedEvent = procedure(Sender: TAggregate) of object;
property OnPlanned: TPlannedEvent;

This event is a result of activation, which happens after expiration of ActivationTime. By handle of

this event we ca n do any possible changes for the model. If you need to order the next activation, use
NextTime again.

Programmer’s Guide 12

4.3. TBlock

Declaration

TBlock = class(TAggregate)

Purpose

 TBlock is an ancestor of all Delsi blocks. Here we describe methods and events common for all
blocks.

Methods

procedure ClearStatistics;

Clears accumulated statistics in the block. When TModel.ClearStatistics is being executed, it
calls the method ClearStatistics for all blocks of a model.

function Count: longint;

Returns the current number of transactions in the block.

function Entries: longint;

Returns the total number of transactions, which have entered into the block.

function Exits: longint;

Returns the total number of transactions, which have exited from the block.

function IsReadyToReceive(Trans: TTransaction): boolean;

Returns True if the block is ready to receive transaction pointed by Trans.

function Pass(Block: TBlock): boolean;

Passes current transaction to the block Block. If transaction is successfully passed the function
returns True. Use this method only when you handle OnRouting, OnPreempt, OnRelease and
OnTimeFinish events.

Events

TOnEnterToBlock = procedure(Sender: TBlock; // This block
 Trans: TTransaction) // Entering transaction

 of object;
property OnEnter: TOnEnterToBlock;

The event occurs when transaction enters into the bloc k. It is not applicable for TGenerator.

TOnExitFromBlock = procedure(Sender: TBlock; // This block
 Trans: TTransaction)// Exiting transaction

 of object;
property OnExit: TOnExitFromBlock;

The event occurs when transaction leaves the block. It is not applicable for TTerminator.

Programmer’s Guide 13

TOnRoutingEvent = procedure(Sender: TBlock; // Sending block (this block)
 Trans: TTransaction) // Passed transaction
 of object;
property OnRouting: TOnRoutingEvent;

Processing this event you can route transaction to another block with the help of Pass method.
By using Delphi’s power you can create very sophistic ated procedures of routing.

Programmer’s Guide 14

4.4. TGenerator

Declaration

TBlock = class(TBlock)

Purpose

TGenerator produces one transaction during the activation. It’ s commonly used source of transactions
in the model. We use it when we need to simulate arrival of served elements. Usually, the arrivals have
some intensity described by probability distribution. For simulation of sequential arrivals, when
transaction leaves the generator we need to order next activation, i.e. next transaction generation.
Appropriating a value ActivationTime random numbers, we simulate statistical properties of arrival
intensity.

Methods

function AverageTime: extended;

Returns the average time between the moments when transactions leave the generator.

function DeviationTime: extended;

Returns the standard deviation of time between the moments when transactions leave the
generator.

procedure NextTime(ActivationTime: real);

 Sets the time to the next activation (generation of transaction).

Events

TOnAfterGenerationEvent = procedure(Sender: TBlock; Trans: TTransaction) of object;
property OnAfterGeneration: TonAfterGenerationEvent;

 The event occurs right after generation of transaction. It’s a good time to set the transaction
properties like priority, preemptive property or fields defined by user.

TBeforeTimeGoOnEvent = procedure(Sender: TAggregate) of object;
property OnBeforeTimeGoOn: TBeforeTimeGoOnEvent;

The event occurs before simulation run. We use it to order the time of generation of the first
transaction. Certainly, we do it with help of NextTime method.

property OnExit: TOnExitFromBlock;

The event occurs when transaction leaves the block. It is a good moment to order the next
transaction generation by use of NextTime method.

 property OnRouting: TOnRoutingEvent;

See 3.3. Tblock

Programmer’s Guide 15

4.5. TQueue

Declaration

TQueue = class(TQueueCustom)

Purpose

This component simulates simple FIFO queue. It handles transactions in accordance with the rule
“First input – first output”. The queue may be limited by capacity.

Another useful feature is the possibility to limit a waiting period in the queue. You can do this by the
ordering the activation when a transaction enters the queue.

If the number of transactions in the queue is less than its capacity, the queue is in the state of “ Ready
to Receive”. If the queue keeps one or more transactions, it is i n the state of “Ready to Give”.

Properties

property Capacity: longint;

Capacity is the greatest possible number of transactions in the queue. If the number of
transactions is equal to capacity, the queue is “ Not Ready to Receive”. If Capacity is equa l to 0,
the possible number of transactions in the queue is unlimited.

Methods

function AverageCount: extended;

Returns the average number of transaction in the queue (average length).

function AverageTime: extended;

Returns the average time spent in the queue.

function Count: longint;

See 3.3. TBlock

function DeviationTime: extended;

Returns the standard deviation of the time spent in the queue.

function IsReadyToReceive(Trans: TTransaction): boolean;

Returns True if the queue is “Ready to Receive” transaction Trans.

function MaxCount: longint;

Returns maximal number of transactions in the queue (maximal length).

procedure NextTime(ActivationTime: real);

Limits the waiting time for entering transaction by the value of ActivationTime. Use this method
only when handle OnEnter event.

function SAverageTime: extended;

Programmer’s Guide 16

Returns average non -zero time spent by transactions in the queue.

function SDeviationTime: extended;

Returns the standard deviation of the non -zero time spent by transactions in the queue.

function TimeLimitExits: longint;

Returns the number of transactions, which have abandoned the queue because of the end of
waiting period.

function Usage: extended;

 Returns a relative part of the time when the queue was in use.

function ZeroEntries: longint;

Returns the number of transaction entries into the queue, when the queue was empty.

Events

property OnEnter: TOnEnterToBlock;

See 3.3. TBlock. If you want to limit the waiting time in the queue, do this by processing this
event with the help of NextTime method.

property OnExit: TOnExitFromBlock;

See 3.3. TBlock.

property OnRouting: TOnRoutingEvent;

See 3.3. TBlock

TOnTimeFinish = procedure(Sender: TBlock; // This queue

 Trans: TTransaction) // The transaction whose time is finished
 of object;
property OnTimeFinish: TOnTimeFinish;

This event occurs when admissible latency period for the transaction is finished. We call this
moment “activation of the queue”. Here you can determine what will happen further with the
transaction. One of alternatives is to pass the transaction to another block. If you do n't pass the
transaction to another block, or if you don’t handle this event at all, the transaction will be
terminated.

Programmer’s Guide 17

4.6. TStack

Declaration

TStack = class(TQueue)

Purpose

This component simulates simple LIFO queue. It handles transactions in accordance with the rule
“Last input – first output”. Besides, this component repeats all properties, methods and events of TQueue.

Programmer’s Guide 18

4.7. TQueuePrty

Declaration

TQueuePrty = class(TQueuePrtyCustom)

Purpose

TQueuePrty differs from TQueue by the discipline of transaction keeping. It keeps them in
accordance with the rule “First input – first output in its priority level” . So, the transactions with higher
priority will leave the queue first.

Another distinguishing feature of TQueuePrty is the following. Let’s imagine that the queue is full,
i.e. the number of transactions is equal to the queue capacity, and a transaction tries to enter into the
queue. Assume that this transaction has preemptive priority with the level higher than the lowest priority
of transactions in the queue. In this case high -priority preemptive transaction will displace the lowest -
priority transaction . This operation is called preempting. Preempted (displaced) transactions may be
passed to the other blocks or terminated depending on handling procedure of OnPreempt event.

Properties

property Capacity: longint;

See 3.5. TQueue

property Preemptive: boolean;

The preempting is possible if Preemptive is True.

Methods

function AverageCount: extended;

See 3.5. TQueue

function AverageTime: extended;

See 3.5. TQueue

function Count: longint;

See 3.3. TBlock

function DeviationTime: extended;

See 3.5. TQueue

function IsReadyToReceive(Trans: TTransaction): boolean;

Returns True if the queue is “Ready to Receive” transaction Trans. It takes place in the following
cases:

- The capacity is unlimited;
- The number of transactions in the queue is less then its capacity;
- Entering transaction pointed by Trans has preemptive priority higher than the priority

of at least one transaction in the queue.

Programmer’s Guide 19

function MaxCount: longint;

See 3.5. TQueue

procedure NextTime(ActivationTime: real);

See 3.5. TQueue

function PreemptExits: longint;

Returns the number of transactions, which have abandoned the queue due to priority preempting.

function SAverageTime: extended;

See 3.5. TQueue

function SDeviationTime: extended;

See 3.5. TQueue

function TimeLimitExits: longint;

Returns the number of transactions, which have abandoned the queue because of the end of
admissible waiting period.

function Usage: extended;

See 3.5. TQueue

function ZeroEntries: longint;

See 3.5. TQueue

Events

property OnEnter: TOnEnterToBlock;

See 3.3 TBlock, 3.5 TQueue

property OnExit: TOnExitFromBlock;

See 3.3. TBlock

TOnPreempt = procedure(Sender: TBlock; // This queue
 Trans: TTransaction) // Preempted transaction
 of object;
property OnPreempt: TonPreempt;

Handling this event, you can determine what will happen with the preempted low -priority
transaction. You can pass preempted transaction to another b lock. If you don't pass the
transaction or if you don’t handle this event at all, the transaction will be terminated.

property OnRouting: TOnRoutingEvent;

See 3.3. TBlock

property OnTimeFinish: TOnTimeFinish;

See 3.5. TQueue

Programmer’s Guide 20

4.8. TServer

Declaration

TServer = class(TProQueue)

Purpose

TServer simulates a serving process. In every moment of time only one transaction can be served.

The transaction is being served during the time defined by NextTime method in the procedure of handling
OnEnter event.

As TQueuePrty component, TServer can handle preempting. Preemptive high -priority transaction
preempts the service of low -priority transaction. The preempted transaction may be passed to another
block or terminated. The third alternative is that the serving preempted transaction may be postponed.
When a high-priority transaction leaves the server, the postponed transaction will be reset on serving for
the rest of service time. The server can store only one postponed transaction per priority level. Postponed
transactions are kept in the stack ordered by priority. Note, there is a difference between the number of
transactions which is being served (may be 0 or 1) and the number of transactions in the server (may be
equal up to number of priority levels in your model).

Properties

property Preemptive: boolean;

The preempting is possible if Preemptive is True.

Methods

function AverageCount: extended;

 Returns the average number of transactions in the server.

function AverageTime: extended;

Returns the average time spent by transactions in the server.

function Count: longint;

See 3.3. TBlock

function DeviationTime: extended;

Returns the deviation of time spent by transactions in the server (including the time of
postponing).

function IdleForExit: boolean;

Returns True if the current transaction in the server is already served. In this case the transaction
is just standing idle to exit.

Programmer’s Guide 21

function IsReadyToReceive(Trans: TTransaction): boolean;

Returns True if the server is “Ready to Receive” transaction Trans. It takes place in the following
cases:

- The server is empty;
- The entering transaction pointed by Trans has preemptive priority higher than the

priority of the transaction, which is served.

function MaxCount: longint;

Returns the maximal number of transactions in the server.

procedure NextTime(ActivationTime: real);

Sets the service time for the transaction entering into the server. The service time is equal to
ActivationTime. Use this method while handle OnEnter event.

procedure Postpone;

Postpone the service of preempted transaction. Use this method only handling OnPreempt event.

function PreemptExits: longint;

 Returns number of transactions, which have abandoned the serve r due to priority preempting.

function Usage: extended;

 Returns a relative part of the time when the server was in use.

Events

property OnEnter: TOnEnterToBlock;

See 3.3. TBlock. The event occurs when transaction enters into the block. It’s the time to define
the service time using NextTime method.

property OnExit: TOnExitFromBlock;

See 3.3. TBlock

TOnPreempt = procedure(Sender: TBlock; // This server
 Trans: TTransaction) // Preempted transaction
 of object;
property OnPreempt: TonPreempt;

Handling this event, you can determine what will happen with the preempted low -priority
transaction. Your can pass tran saction to another block or postpone its service. If you don't do it
or if you don’t handle this event at all, the transaction will be terminated.

property OnRouting: TOnRoutingEvent;

See 3.3. Tblock

Programmer’s Guide 22

4.9. TStorage

Declaration

TStorage = class(TQueueCustom)

Purpose

TStorage may be described as a server able to serve several transactions simultaneously. It is
necessary to notice, that TStorage does not support preempting.

Properties

property Capacity: longint;

Capacity is the greatest possible number of transactions, which could be served in the storage. If
the number of transactions is equal to capacity, the storage is “ Not Ready to Receive”. If
Capacity is equal to 0, the possible number of transactions in the storage is unlimited.

Methods

function AverageCount: extended;

Returns the average number of transactions in the storage. You can determine the average filling
of the storage as a ratio of AvarageCount to Capacity.

function AverageTime: extended;

Returns the average time spent by transactions in the storage.

function Count: longint;

See 3.3. TBlock

function DeviationTime: extended;

Returns the deviation of time spent by transactions in the storage.

function IsReadyToReceive(Trans: TTransaction): boolean;

Returns True if the storage is “Ready to Receive” transaction Trans. The function returns True if
the Capacity is 0 or the number of transactions is less than Capacity.

function MaxCount: longint;

Returns the maximal number of tran sactions in the storage.

procedure NextTime(ActivationTime: real);

Sets the service time for the transaction entering the storage. Use this method handling OnEnter
event.

function Usage: extended;

Returns the relative part of time when the storag e was in use.

Programmer’s Guide 23

Events

property OnEnter: TOnEnterToBlock;

The event occurs when transaction enters into the storage. It’s the time to define the service time
by use of NextTime method.

property OnExit: TOnExitFromBlock;

See 3.3. TBlock

property OnRouting: TOnRoutingEvent;

See 3.3. TBlock

Programmer’s Guide 24

4.10. TStoragePrty

Declaration

TStoragePrty = class(TQueuePrtyCustom)

Purpose

Additionally to the possibilities of TStorage, this component supports priority preempting. The
preempting in TStoragePrty is similar to preempting in TQueuePrty and TServer. In contrast to
TServer, it does not support the postponed service.

Properties

property Capacity: longint;

 See 3.9. TStorage

property Preemptive: boolean;

The preempting is possible if Preemptive is True.

Methods

function AverageCount: extended;

See 3.9. TStorage

function AverageTime: extended;

See 3.9. TStorage

function Count: longint;

See 3.3. TBlock

function DeviationTime: extended;

See 3.9. TStorage

function IsReadyToReceive(Trans: TTransaction): boolean;

Returns True if the queue is “Ready to Receive” transaction Trans. The function returns True in
the following cases:

- The capacity is unlimited;
- The number of transactions in the storage is less then its capacity;
- The entering transaction pointed by Trans has preemptive priority higher than

priority of the transaction, which is being served.

function MaxCount: longint;

See 3.9 TStorage

Programmer’s Guide 25

procedure NextTime(ActivationTime: real);

See 3.9. TStorage

function PreemptExits: longint;

 Returns the number of transactions, which have abandoned the storage due to priority
 preempting.

function Usage: extended;

See 3.9. TStorage

Events

property OnEnter: TOnEnterToBlock;

See 3.3. TBlock, 3.9. TStorage

property OnExit: TOnExitFromBlock;

See 3.3. TBlock

TOnPreempt = procedure(Sender: TBlock; // This storage
 Trans: TTransaction) // Preempted transaction
 of object;
property OnPreempt: TonPreempt;

Handling this event, you can determine what will happen with the preempted low -priority
transaction. You can pass preem pted transaction to another block. If you don't pass the
transaction or if you don’t handle this event at all, the transaction will be terminated.

property OnRouting: TOnRoutingEvent;

See 3.3. TBlock

Programmer’s Guide 26

4.11. TTerminator

Declaration

TTerminator = class(TBlock)

Purpose

 Transactions enter into this block to be terminated. When you handle OnEnter event, the transaction
is still accessible and you have a possibility to get some information about it. TTerminator is always
“Ready to Receive”.

Events

property OnEnter: TOnEnterToBlock;

See 3.3. TBlock.

Programmer’s Guide 27

4.12. TDivider

Declaration

TDivider = class(TBlock)

Purpose

Splits the arrived transaction into several transactions. The new transactions have the same priority
and ability to preempt just as their parent. When divider emits transactions, parent transaction goes last.
This block is “Ready to Receive” and “not Ready to Give” if it is empty. If it is not empty, it is
“not Ready to Receive” and “Ready to Give”.

With the purpose of routing you may need to distinguish parental and generated transactions. You

can do this by handling OnExit or OnRouting events. If TDivider.Count returns 1, it’s a parental
transaction.

Methods

function IsReadyToReceive(Trans: TTransaction): boolean;

See 3.3. TBlock

Properties

property Capacity: longint;

 The number of the output transactions obtained in the outcome of splitting.

Events

property OnEnter: TOnEnterToBlock;

See 3.3. TBlock

property OnExit: TOnExitFromBlock;

See 3.3. TBlock

property OnRouting: TOnRoutingEvent;

See 3.3. Tblock

Programmer’s Guide 28

4.13. TAssembler

Declaration

TAssembler = class(TBlock)

Purpose

TAssembler assembles several arrived transactions into one. Actually, the first entering transaction
remains alive. The rest of the transactions will be terminated.
 This block is “Ready to Receive” and “not Ready to Give” until the resulting transaction is assembled.
 When transaction is assembled, TAssembler is “ not Ready to Receive” and “Ready to Give”.

Properties

property Capacity: longint;

 Sets the number of the input transactions necessary to obt ain the assembled transaction.

Methods

function IsReadyToReceive(Trans: TTransaction): boolean;

See 3.3. TBlock

Events

property OnEnter: TOnEnterToBlock;

See 3.3. TBlock

property OnExit: TOnExitFromBlock;

See 3.3. TBlock

property OnRouting: TOnRoutingEvent;

See 3.3. Tblock

Programmer’s Guide 29

4.14. TCreator

Declaration

TCreator = class(TBlock)

Purpose

Creates the transactions on demand. After creation of transactions the component is “Ready to Give”
as long as transactions are being emitted. In a combination with TScheduler you can simulate the
generator, which produces portions of the transactions.

Methods

procedure Generate(Number: longint);

Immediately generates Number transactions and order the next activation time equal to 0. Thus,
after the generation simulation manager immediately tries to move generated transactions
through the model.

Events

property OnAfterGeneration: TonAfterGenerationEvent;

 The event occurs right after generation of transaction. It’s a good time to set the transaction
properties like priority, preemptive property or fields defined by user. (See 3.4. TGenerator.)

property OnExit: TOnExitFromBlock;

See 3.3. TBlock

property OnRouting: TOnRoutingEvent;

See 3.3. TBlock

Programmer’s Guide 30

4.15. TGate

Declaration

TGate = class(TBlock)

Purpose

This block is a simple gate. You can lock, unlock and inverse the gate. If gate is unlocked it works
like simple server with zero service time. By locking the gate you discontinue promoting of the
transactions that go through it.

Methods

procedure Inverse

 Locks the gate if it is unlocked and vice -verse.

function IsLocked: boolean;

 Returns True if the gate is locked and vice -verse.

procedure Lock;

 Sets the gate into the “not Ready to Receive” state. If there is transaction in the gate in the locking
moment, this transaction will leave the gate whenever it will be possible.

procedure Unlock;

 Unlocks the gate.

Events

property OnEnter: TOnEnterToBlock;

See 3.3. TBlock

property OnExit: TOnExitFromBlock;

See 3.3. TBlock

property OnRouting: TOnRoutingEvent;

See 3.3. Tblock

Programmer’s Guide 31

4.16. TTabulator

Declaration

TTabulator = class(TComponent)

Purpose

This component is not an aggregate. It is designed for statistical purpose s only. If you need to build
histogram of some output parameter, this component helps you to calculate the hits of its values in
numerical intervals. Beside that, TTabulator calculates the average value of the parameter and its standard
deviation.

Properties

property Interval: real;

 Width of a numerical interval.

property IntervalCount: byte;

Number of intervals. The range of a dmissible values is from 2 to 254.

property LowerBound: real;

Lower bound of the first interval.

Methods

function Count: longint;

Returns the total number of tabulated values.

function Deviation: real;

Returns the standard deviation of tabulated values.

function Hits(Index: byte): longint;

Returns the number of hits in Index interval. If Index is equal to 0, the function returns the
number of hits lower than LowerBound. If Index is equal to IntervalCount+1, the function
returns the number of hits higher than the upper bound of the last interval.

function Mean: real;

Returns the averag e value of tabulated values.

procedure PutValue(Value: real);

Inputs value for tabulation.

procedure Resets;

 Resets all accumulated data.

Programmer’s Guide 32

4.17. TMultiRand

Declaration

TMultiRand = class(TComponent)

Purpose

 This component is intended to generate random variates of different distributions.

Properties

The basement for obtaining all distributions is uniform distribution from 0 to 1. The prime
modulus multiplicative congruential random number generator (P MMCG) is used to obtain uniformly
distributed values. The algorithm of PMMCG is the following.

 MODULUS: = 2147483647; // 2^31-1
 Seed:= (Multiplier * Seed) mod MODULUS;
 Result:=Seed / MODULUS;

property Seed: comp;

This property sets the initial seed for PMMCG. The value of Seed should be in the range from
2 to 2147483646. The default value is 1000000000.

property Multiplier: comp;

This property sets the multiplier for PMMCG. The value o f Multiplier should be in the range
from 2 to 2147483646. The default value is 950706376.

Fishman and Moore (1986) recommend the best values of Multiplier.

 950,706,376
 742,938,285
 1,226,874,159
 62,089,911
 1,343,714,438

Methods

function Beta(ShapeAlpha: real; ShapeBeta: real;
 LowerBound: real; UpperBound: real): real;

 Returns Beta distributed variates with the following paramet ers and limitations.

ShapeAlpha – α-shape, ShapeAlpha > 0;
 ShapeBeta – β-shape, LowerBound > 0;
 LowerBound – Lower bound of distribution, LowerBound >= 0;

UpperBound – Upper bound of distribution, UpperBound > 0, LowerBound <= UpperBound.

Method: Transformation of random variates where sample from Beta distribution is some ratio
of two Gamma -distributed samples [4].

Programmer’s Guide 33

function Gamma(Mean: real; Alpha: real): real;

 Returns Gamma-distributed variates.

Mean – the mean of distribution, Mean >= 0;
Alpha - the α-shape parameter, Alpha > 0.

Method: For α<1, Jonk’s method is used [7]. For α>1 the function uses combination of Gamma
distribution for α<1 and Erlang distribution. This method is suggested by Valeria Derevenskaya,

function Erlang(Mean: real; M: integer): real;

Returns variates with Er lang distribution. Distribution has the following parameters.

 Mean – the mean of distribution, Mean >= 0;
 M – the shape parameter, M > 0.

Method: Summarizing M exponential variates; each of them is exponentially distributed with the
mean equal to Mean/M [7].

function Exponential(Mean: real): real;

Returns variates exponentially distributed with the mean Mean, where Mean >= 0.

Method: Inverse transfomation [7].

function Lognormal(Mean: real; Deviation: real): real;

Returns variates with lognormal distribution. Mean and Deviation parameters are the mean and
standard deviation of the distribution; both parameters should be greater than 0.

Method: For the equation L=exp(N), if N is normal distributed var iates then L is lognormal
distributed [2].

function Normal(Mean: real; Deviation: real): real;

Returns variates with normal distribution. The mean and standard deviation of the variates are
set in the parameters Mean and Deviation; both parameters should be greater than 0.

Method: Transformation of random variables with a selective truncation was used for obtaining
normal variates [1,3].

procedure Reset;

Resets the component into initial state. It sets Seed into initially assigned value and resets some
internal triggers.

Programmer’s Guide 34

function Triangular(Min: real; Mode: real; Max: real): real;

Returns value with triangular distribution. Distribution has the following parameters.

Min – minimal value, Min >= 0.0;
Max – maximal value, Max >= 0.0;
Mode – mode of distribution, Mode >= 0.0, Min <= Mode <=Max.

Method: Inverse transformation [6].

function Uniform(LowerBound: real; UpperBound: real): real;

Returns variates uniformly distributed between LowerBound and UpperBound.
Both parameters should be equal or greater than 0 and LowerBound <= UpperBound.

function Weibull(Alpha: real; Scale: real): real;

 Returns variates with Weibull distribution, which has the following parameters.

Alpha – shape, Alpha > 0
Scale – scale, Scale > 0

Method: Inverse transfomation [5].

References

1. Ahrens, J.H. and U.Dieter, “Computer Methods for Sampling from the Exponential and Normal

Distributions”, Comm. ACM, Vol. 15, 1972, pp. 873-882.
2. Aitchison, J. and J.A.C. Brown, The Lognormal Distribution, Cambridge Press, 1957
3. Box, G.E.P. and M.A.Miller, “A Note on the Generation of Random Normal Deviates”, Annals of

Math Stat., Vol. 29, 1958, pp. 610-611.
4. Fishman, G.S., Principles of Discrete Event Simulation, John Wiley, 1978.
5. Hahn, G.J. and S .S.Shapiro, Statistical Models in Engineering, John Wiley, 1967
6. Pritsker, A.A.B., The GASP IV Simulation Language, John Wiley, 1974
7. Pritsker, A.A.B., Introduction to simulation and SLAM II, John Wiley, 1984

Programmer’s Guide 35

How to contact Softland?

If you have any questions or comments, please, feel free to contact us.

e-mail: german@rivne.com

Web: http://www.softland.rv.ua or http://www.softland.rovno.ua

Address: Softland
 Soborna Street, 1
 Rivne
 Ukraine 33028

Tel: +380 362 261570
Fax: +380 362 265441

