The DBComboBoxPlus & ComboBoxPlus Components (ver 4.0)

For Delphi 1,2,3,4 and C++Builder 3

We've created the DBComboBoxPlus and ComboBoxPlus components to fill a void for more powerful combo boxes. Our original DBLookupComboPlus component was a great success and our customers insisted that we produce similar replacements for the DBComboBox and ComboBox. Here they are!

Like the original these two new components offer the following features

(New in Version 4)

Support for Delphi 4 and C++ Builder 3

New Dropdown list component editor lets you define list items at design time. (double-clicking or right click menu to access)

The new Delphi 4 control docking is supported as is the new Constraints property

Now completely compatible with the TCtrlGrid

A ButtonGlyph property has been added so you can change the dropdown button graphic.

ListParentColor and ListParentFort properties have been added.

The new Sorted property replaces the old IsSorted property

Completely overhauled internal structure substantially reduces resource usage.

(New in Version 3

·	Multiple columns in the drop down list.

·	Sorted drop down list.

·	Incremental searches of the drop down list as the user types.

·	Auto-fill-in of untyped text as the user types.

·	Data aliasing or lookup capabilities. (View customer name, store customer number)

·	The ability to add new records to the lookup table on the fly.

·	The ability to display the list either left or right justified and above or below the edit box.

·	Titles in the drop down list.

·	Independent size control of the list and edit portion of the control.

·	Separate font and color selection for the list and edit portion of the control.

·	Separate cursor selection for the list, edit speed button portions of the control.

·	Additional look and feel enhancements.

Like with the original we've included a comprehensive demonstration project that shows how to implement these new capabilities, complete printable documentation (this thing you're reading) as well as complete installable on-line help.

This document has four sections. Additional information is available in the components on-line help file.

I. Disclaimer and Legal Stuff

II. Installation

III. Component Reference

IV. Ordering & Contacting Info

I. DISCLAIMER & LEGAL STUFF - PLEASE READ

Out & About Productions is NOT responsible for any damage to your data as a result of using these components.

You may distribute any application that includes these components and supporting components with no additional royalties beyond your initial license registration fee.

If you use either of these components to develop an application where you also deliver the application's source then this is considered an additional license and the receiving party must license a copy of the component from Out & About Productions.

You have the right to use this technical information subject to the terms of Borland's no-nonsense License Statement that you received with Delphi. Out & About products are licensed with exactly the same rules as documented in Borland's no-nonsense License Statement.

The TDBComboBoxPlus and TComboBox components are copyright 1995-1997 by Out & About Productions and is protected by international law. We reserve all rights.

II. INSTALLATION

Complete installation of this component requires that you

1.	Copy the distribution archive file to your disk drive.

2.	Unzip the archive.

3.	Install the component into the Delphi Component Palette.

4.	Merge the components help into the Delphi help system.

5.	Set up the demo.

Heres a more detailed description

1. Copy the distribution archive file to your disk drive.

You’ve already done this if you are reading this file.

2. Unzip the archive.

You’ve probably done this already also but if you didn’t unzip the archive using the –d option (to keep the subdirectories) then you should start again. Create a file in you root directory called \CB and copy the zip file into this directory. Then in that directory do a

Pkunzip –d YourArchive.zip

This will create a directory structure under \CB that looks like this

..CB

Delphi1

Delphi2

Delphi3

Delphi4

CBuilder (if requested but at no additional charge)

Source (only if you purchased the source code)

Some general files like this one, the help files and demo files

See below for a detailed listing of the archive directory structure.

For Delphi 1

Copy the CBPLUS.HLP file to the \Delphi\Bin directory.

Copy the CBPLUS.KWF file to \Delphi\Help.

For Delphi 2

Copy the CBPLUS.HLP and CBPLUS.KWF file to the \Delphi 2.0\Help directory.

For Delphi 3 and 4

Copy the CBPLUS.HLP and CBPLUS.CNT file to the \Delphi 3\Help directory. (The CNT File may be missing)

For C++Builder

Same as Dephi 3 & 4 above.

3. Install the component into the Delphi Component Palette.

For Delphi 1.0

Start Delphi, choose Options | Install Components and then

Make sure the file type to browse is *.PAS

Click the Browse button and select CBPLUS.PAS in your CB\D1 component directory.

Press OK in the Install Components dialog and wait for the Library to rebuild.

For Delphi 2

Start Delphi, choose Component | Install Components and then

Make sure the file type to browse is *.PAS

Click the Browse button and select CBPLUS32.PAS in your CB\D2 directory.

Press OK in the Install Components dialog and wait for the Library to rebuild.

IMPORTANT - There were two versions of Delphi 2 released by Borland (versions 2.00 and 2.01). If you get an error message about the DBGrids unit being out of date then please contact Inprise to get the 2.01 update for you Delphi 2 product. It is no charge (except for shipping and handling).

For Delphi 3

From the \CB\Delphi3 directory copy

VCLCBP30.DPL to your \Windows\System directory,

DCLCBP30.DPL to your \Delphi 3\BIN and

VCLCBP30.DCP, DCLCBP30.DCP, plus all *.RES, *.DFM and *.DCU files to your \Delphi 3\LIB directory.

Start Delphi, choose Component | Install Packages

Press the “Add” button to the left of the “Remove” button

Make sure the file type to browse is *.dpl

Navigate to the \Delphi 3\BIN directory and select the DCLCBUP30.DPL file

Close the component install dialog

By default the TDBComboBoxPlus is installed into the Data Controls palette and the TComboBoxPlus is installed into the Standard Palette. You can move the component to a different component page. See the online help for more information.

For Delphi 4

From the \LU\Delphi4 directory copy

VCLCBP40.BPL to your \Windows\System directory,

DCLCBP40.DPL to your \Delphi4\BIN and

VCLCBP40.DCP, DCLCBP40.DCP, plus all *.RES, *.DFM and *.DCU files to your \Delphi4\LIB directory.

Start Delphi, choose Component | Install Packages

Press the “Add” button to the left of the “Remove” button

Make sure the file type to browse is *.bpl

Navigate to the \Delphi4\BIN directory and select the DCLCBP40.BPL file

Close the component install dialog

By default the TDBComboBoxPlus is installed into the Data Controls palette and the TComboBoxPlus is installed into the Standard Palette. You can move the component to a different component page. See the online help for more information.

For C++ Builder 2

Please refer to the online documentation for installing 3rd party components.

4. Merge the components help into the Delphi help system.

Please refer to your Delphi online help for more information on completing this task.

>>We no longer recommend doing this because the existing Delphi help system is already at the upper limit of help topics allowed by Microsofts HLP style help system. Merging additional help topics will cause unpredictable behavior.<<

III. COMPONENT REFERENCE

The following reference section gives an overview of the two components and then documents the properties, methods and events.

DBComboBoxPlus Component

Unit

DBLUP1

Description

A TDBComboBoxPlus component is a data-aware combo box control. It allows the user to change the value of the field of the current record in a data set either by selecting an item from a list or by typing in the edit box part of the control. The selected item or entered text becomes the new value of the field if the database combo box's ReadOnly property is False.

The TDBComboBoxPlus component combines an edit box similar to a TDBEdit component with a drop-down string grid list that enables a user to pick from a predefined set of values.

You link the database combo box with a data set by specifying the data source component, TDataSource, that identifies the data set as the value of the memo's DataSource property. Specify the field in the data set you want to access as the value of the DataField property.

You specify the values the user can choose from in the combo box by filling the associated array of strings. This array of string can be filled either at runtime with the Addrow method or at design time using the DropDown List component editor (double click the compoent to access the editor).

The DBComboBoxPlus is an enhanced DBComboBox. Unlike the original control the Plus version is not derived from the Windows ComboBox standard control. Instead DBComboBoxPlus is a brand new control that incorporates capabilities found in the popular DBLookupComboPlus component.

DBComboBoxPlus was built by combining a standard edit control with a modified string grid for the drop down list.

The data for the drop down grid is stored in a two dimensional array of strings just like the TStringGrid. The Lookup (or aliasing) feature uses column 0 of this structure to store the lookup (or alias) value. Column 1 stores the display value and columns 2 through MaxInt are available for additional columns in the drop down list.

How the combo box appears and behaves depends on the value of its Style property. Two new styles are available;.csIncSearch and csIncSrchEdit. These new styles support the sorted list, incremental search and auto-fill-in capabilities.

Objects can be stored in the drop down grid as well as strings.

The following details the properties that are unique to DBComboBoxPlus and ComboBoxPlus.

Purpose

DBComboBoxPlus is a data-aware version of the TComboBoxPlus component.

Users can update a field in the current record of a data set by typing a value or choosing a value from the drop-down grid list.

All the strings within a the drop down grid are contained in the Cells property, which you can use to access a particular string within the grid. All the objects associated with the strings in a string grid are contained in the Objects property. Use Objects to access a particular object.

All the strings and their associated objects for a particular column can be accessed using the Cols property. The Rows property gives you access to all the strings and their associated objects for a particular row.

·	To access the strings within the grid, use the Cells property.

·	To access the objects within the grid, use the Objects property.

·	To access the strings and objects within a particular row or column, use the Rows or Columns property.

Column zero (0) of the drop down grid in never displayed and is reserved for the lookup value. If the LookupActive property is True then the Value property contains a value from column 0.

Column one (1) of the drop down always contains the value displayed in the edit portion of the control and accessed by the DisplayValue property. If LookupActive is False then this is also the value returned in the Value property.

Besides the methods and properties available to TStrings objects through the Rows and Columns properties you can also use the AddRow, ClearGridData methods to manipulate the data in the drop down grid.

Use the ColCount and RowCount properties to adjust the number of columns and rows in the drop down grid. You may also use the SizeGridToData to ensure that no extra blank rows or columns appear in the drop down grid.

At run time, the user can choose a row from the list or, depending on the value of the Style property, type in a different entry. When the component is linked to a database column through its DataField property, it displays the value in the current row, regardless of whether it appears in the Items list.

The Style property determines the display style of the Items list:

·	csIncSearch - Creates a sorted drop-down grid with no attached edit box, so the user can't edit an item or type in a new item. This style supports a read-only incremental search.

·	csIncSrchEdit - Creates a sorted drop-down grid with an edit box in which the user can enter text. As the user enters text the drop down list is incrementally searched. This style allows the user to enter items which are not in the drop down list so it is somewhat similar to csDropDown except that it supports the incremental search. Further, this style not only supports entry of new items into the main DataSource it also supports a mechanism for adding rows to the Lookup array. See the OnNewLookupRec event for more details.

Other properties enable you to customize the display of both the edit and drop down grid portion of the control:

DropDownCount specifies the maximum number of rows displayed in the grid list. If the number of rows is greater than DropDownCount, the user can scroll the list. If the number of rows is less than DropDownCount, the list is just large enough to display all the rows.

DefaultRowHeight determines the number of pixels in height of a row in the drop down grid the RowHeights property may also be used at run time to adjust the height of individual rows.

Use DropDownAlign and DropDownTop to control the alignment of the grid.

The DropDownWidth controls the width of the drop down list grid.

Titles are added to the drop down list with the FixedRows property and the titles background color is controlled with TitleColor.

The font and color of the drop down grid are adjusted using the ListColor and ListFont properties. The Options property is used to show or hide grid lines.

For the edit box portion of the control use the ShowSpeedButton property it show or hide the speed button and use the BorderStyle property to show or hide the border.

At run time, you can select all the text in the edit box portion of the control with the SelectAll method. To find out which text the user selected, or to replace selected text, use the SelText property. To select only part of the text or to find out what part of the text is selected, use the SelStart and SelLength properties.

ComboBoxPlus Component

The ComboBoxPlus has all the same features as the DBComboBoxPlus component as detailed above with the exception that it is not Data Aware. It is designed to be a completely functional replacement for the standard ComboBox component that ships with Delphi.

The advantage of having a non-data-aware version of this control is that it does not require any of the overhead of data-awareness. Specifically none of the overhead of the BDE, the DB unit or DBTables unit are required for the ComboBoxPlus control

You still get all the powerful new features including incremental search, auto-fill-in, multiple columns, column titles, data alaising etc. which makes this control superior to the original ComboBox control.

Properties

AutoDropDown Property

Declaration

property AutoDropDown: Boolean;

Description

Set this property to TRUE if you want the list to automatically drop down when the user starts to type in the field. This applies only to the two new field styles csIncSrchEdit and csIncSearch. Set to FALSE and the list does not drop down but the auto fill-in and incremental search still function.

Example

This example causes the DBLookupComboPlus to drop down when the user starts to type in the edit field.

procedure TForm1.DBLookupComboPlus1Click(Sender: TObject);

begin

 DBLookupComboPlus1.AutoDropDown := True;

end;

ButtonCursor Property

Declaration

property ButtonCursor : TCursor;

Description

This controls what mouse cursor appears over the speedbutton protion of the control. This property along with Cursor and ListCursor properties give you complete control of the cursor in the different parts of this control.

Cells Property

Declaration

property Cells[ACol, ARow: Integer]: string;

Description

Run-time only. The Cells property is an array of strings, one string for each cell in the drop down grid. Use the Cells property to access a string within a particular cell. ACol is the column coordinate of the cell, and ARow is the row coordinate of the cell. The first row is row zero, and the first column is column zero.

Note that while Cells is a runtime only property, you can still enter values for cells at design time by using the component editor which is accessed by either right clicking the component and selecting the first menu item or by double clicking the component.

Col zero is never displayed in the drop down list and is used to store alias or lookup value if the LookupActive property is set to True. Col one always stores the DisplayValue.

The ColCount and RowCount property values define the size of the array of strings.

You may use the cells property to edit any cell in the drop down grid. To add whole rows of data at once you may also use the AddRow function.

ColCount Property

Declaration

property ColCount : LongInt;

Description

Run-time only. The value of the ColCount property determines the number of columns in the drop down grid. The default value is 5. This value must be large enough to fit the data entered using the AddRow method. The ColCount property determines how many columns of data are available to display in the dropdown grid.

Use the SizeGridToData method to automatically reset the ColCount property after using AddRow.

Col Property

Declaration

property Col :LongInt

Description

Seldom used. Retuns the current column. See row property.

Cols Property

Declaration

property Cols[Index: Integer]: TStrings;

Description

The Cols property is an array of the strings and their associated objects in a column. The number of strings and associated objects is always equal to the value of the ColCount property, the number of columns in the drop down grid. Use the Cols property to access the strings and their associated objects within a particular column in the drop down grid. The Index parameter is the number of the column you want to access; the Index value of the first column in the grid is zero.

Col[0] contains the lookup values and is never displayed in the drop down grid. Col[1] contains the strings displayed in the edit box portion of the control (AKA the DisplayValue).

DefaultRowHeight Property

Declaration

property DefaultRowHeight : Integer;

Description

The DefaultRowHeight property determines the height of all the rows within the grid. The default value is 24 pixels.

If you want to change the height of a single row within a grid without changing other rows, use the RowHeights property during run time. If you change the DefaultRowHeight property value after changing the height of specified rows, all the rows become the height specified in the DefaultRowHeight property once again.

DisplayValue Property

Declaration

property DisplayValue : string;

Description

Run-time only. The DisplayValue is the string that appears in the edit box part of the combo box. Its value is contained in column one of the strings array associated with the control and accessed through the cells property. The current value of the Value property, which determines the current row in the associated strings array, also determines which string is the DisplayValue string.

DropDownAlign Property

Declaration

property DrowDownAlign : TLeftRight;

Note that TLeftRight is defined as

Type

 TLeftRight = (Left, Right);

Description

The DropDownAlign controls how the drop down list justifies it self in relation to the edit box part of the control. There are only two possible values for this control, Right and Left. Choose Right to right allign the drop down list and Left to left align the list. This property only appiles when the DropDownWidth property has been assigned a value.

Note that the original TDBLookUpCombo allowed the list to display off of the visible screen when there was not enough room. This problem can now be controled with this property. If fact if you try to drop the list to the left and there is no room it will automatically switch to the right. Same if you try to drop it to the right and there is not enough room it will switch to the left. If there is not enough room in either direction it will right justify and go off the screen.

Example

This example increases the width of the dropdown and then left justifies it.

procedure TForm1.Button1Click(Sender: TObject);

begin

 DBLookUpComboPlus1.DropDownWidth := 250;

 DBLookUpComboPlus1.DropDownAlign := Left;

end;

DropDownTop Property

Declaration

property DropDownTop: TBelowAbove;

Note that TBelowAbove is defined as

Type

 TBelowAbove= (Below, Above);

Description

The original TDBLookupCombo defaults to drop down below the edit box portion for the control. In the original control it will only rise up in the case where there is not enough room on the screen below the control. Use the DropDownTop property to over ride this default and force the list to rise up.

The default selection is Below which causes the list to appear beneath the edit box portion of the control. Select Above to force the list to rise up above the edit box.

Note that if this property is set to Above and there is not enough room to display the whole list it will automatically switch back to the drop down state.

Example

This example causes the list box portion of DBLookupComboPlus1 to rise-up above the edit box portion of the control:

procedure TForm1.DBLookupComboPlus1Click(Sender: TObject);

begin

 DBLookupComboPlus1.DropDownTop := Above;

end;

DropDownWidth Property

Declaration

property DropDownWidth : Integer;

Description

The DropDownWidth property determines how wide the drop-down list of the combo box is in pixels. The default value is 0, which means the drop-down list is sized to exactly fit all the displayable columns in the associated string grid. Note that a value of 0 has a different meaning here than in the DBLookupComboPlus and DBLookupCombo.

The DropDownWidth property is useful when you are displaying multiple columns.

FixedRows Property

Declaration

property FixedRows : Integer;

Description

The FixedRows property determines the number of nonscrolling rows at the beginning of the drop down grid. The default value is 0. Nonscrolling rows remain fixed at top of the grid, even when the user scrolls the other rows. Nonscrolling rows are useful for displaying column titles that need to remain visible in the grid at all times.

Each grid must have a least one row that isn't fixed. In other words, the value of the FixedRows property must always be at least one less than the value of the RowCount property, which contains the number of rows in the grid.

For the csIncSearch and csIncEditSrch, styles which sort the data in the string array, the data in rows 0 through FixedRows-1 is not included in ths sort.

Sorted Property

Declaration

property Sorted : Boolean;

Description

Use this with to sort the list and query if the drop down list is sorted or not.

ListCanvas Property

Declaration

property ListCanvas : TCanvas;

Description

Run-time and read only. The ListCanvas property gives you access to a drawing surface of the drop down grid that you can use when implementing a handler for the OnDrawCell.

ListColor Property

Declaration

property ListColor :TColor;

Description

The ListColor Property determines the background color of the drop down list. See also color property for more information.

ListCursor Property

Declaration

property ListCursor : TCursor;

Description

This controls what mouse cursor appears over the dropdown list protion of the control. This property along with Cursor and ButtonCursor properties give you complete control of the cursor in the different parts of this control.

ListDefaultDrawing Property

Declaration

property ListDefaultDrawing : Boolean;

Description

The ListDefaultDrawing property determines if a cell in the drop down grid is painted and the item it contains is drawn automatically. If True, the default drawing occurs. If False, your application must handle all the drawing details in the OnDrawCell event handler for the drop down grid.

When ListDefaultDrawing is True, the Paint method initializes the grids Canvas font and brush to the control font and the cell color. The cell is prepainted in the cell color and a focused TRect object is drawn in the cell. The state of the cell is returned. The possible states are a fixed cell, a focused cell, or a cell within the area the user has selected.

Tip - You do not need to make ListDefaultDrawing False to do owner drawing. Only make this TRUE if you want to draw everything. If you leave it false you can pick and choose which cells you want to draw your self.

ListFont Property

Declaration

property ListFont : TFont;

Description

The ListFont property controls which font is used in the drop down grid list. See Font Property for more information about the font properties.

ListVisible

Declaration

property ListVisible: Boolean;

Description

Run time only. Use to determine if the drop down list is visible. Returns true if the list is visible, otherwise it returns false.

LookupActive Property

Declaration

property LookupActive : Boolean;

Description

The LookupActive property controls which value is returned in the value property. If LookupActive is False (default) then the value from the highlighted row in column 1 is returned (the same as the DisplayValue). If LookupActive is True then the value from the highlighted row in column 0 is returned.

Objects Property

Declaration

property Objects[ACol, ARow: Integer]: TObject;

Description

Run-time only. The Objects property is an array of objects, one for each cell in the drop down grid. The ColCount and RowCount values define the size of the array of objects. Use the Objects property to access an object within a particular cell. ACol is the column coordinate of the cell, and ARow is the row coordinate of the cell. If you put an object into the Objects array, the object will still exist even if the string grid is destroyed. You must destroy the object explicitly.

Options Property

Declaration

property Options : TStringGridPOptions;

Where TStringGridPOptions is defined as

TStringGridPOptions = (loColLines, loRowLines, loThumbTracking);

Description

These are the possible values that can be included in the Options set for the draw and string grid controls:

Value			Meaning

loColLines		When True, lines between the columns appear.

loRowLines		When True, lines between the rows appear.

loThumbTracking	When True, the contents of the grid scrolls while the user is moving the thumb tab of the grid scroll bar. When False, the contents of the grid doesn't scroll until the user releases the thumb tab in its new position

Row Property

Declaration

property Row : Longint;

Description

Run-time only. The row property returns to currently highlighted row. Use this with the cells property to retrieve values in columns other than 0 or 1.

RowCount Property

Declaration

property RowCount : LongInt;

Description

Run-time only. The value of the RowCount property determines the number of rows in the drop down grid. The default value is 10. This value must be large enough to fit the data entered using the AddRow method. Prior to entering new data with the AddRow method you should increase the RowCount Property by a number equal to or greater than the number of new rows to be entered. After entering the new data use the SizeGridToData method to automatically reset the ColCount property to the minimum number of row necessary.

RowHeights Property

Declaration

property RowHeights[Index: Longint]: Integer;

Description

Run-time only. The RowHeights property determines the height in pixels of all the cells within the row referenced by the Index parameter.

By default, all the rows are the same height, the value found in the DefaultRowHeight property. To change the height of all rows within a grid, change the DefaultRowHeight property value.

To change the height of one row without affecting any others, change the RowHeights property. Specify the row you want to change as the value of the Index parameter. Remember, the first row always has an Index value of 0.

The property is especially useful when using the onDrawCell event to simulate the standard combobox csOwnerDrawVariable style

Rows Property

Declaration

property Rows[Index: Integer]: TStrings;

Description

Run-time only. The Rows property is an array of the strings and their associated objects in a row. The number of strings and associated objects is always the value of the RowCount property, the number of rows in the grid. Use the Rows property to access the strings and their associated objects within a particular row in the drop down grid. The Index parameter is the number of the row you want to access, with the first row having an Index value of zero.

SearchValue Property

Declaration

property SearchValue : String;

Description

Runtime only. Contains the string to be be searched for in the list or table of display values. This is the value used to do the incremental search. Use this property in conjunction with the onBeforeSearch and onAfterSearch events to modify the way in which search operates.

ShowSpeedButton Property

Declaration

property ShowSpeedButton: Boolean;

Description

Hide the drop down speed button by setting this property to FALSE. Show the drop down speed button by selecting TRUE.

Example

This example hides the drop down speed button.

procedure TForm1.DBLookupComboPlus1Click(Sender: TObject);

begin

 DBLookupComboPlus1.ShowSpeedButton := False;

end;

Style Property

Declaration

property Style: TDBLookupComboPlusStyle;

Where TDBLookupComboPlusStyle is defined as

Type

 TDBLookupComboPlusStyle = (csDropDown, csDropDownList, csIncSearch, csIncSrchEdit);

Description

The Style property determines how a database lookup combo Plus box displays its items. These are the possible values:

csIncSearch - Creates a drop-down list with no attached edit box, so the user can't edit an item or type in a new item. This style supports a readonly incremental search.

csIncSrchEdit - Creates a drop-down list with an edit box in which the user can enter text. As the user enters text the drop down list is incrementally searched. This style allows the user to enter items which are not in the drop down list so it is somewhat simialr to csDropDown except that it supports the incremental search. Further, this style not only supports entry of new items into the main DataSource it also supports a mechanism for adding records to the Lookup table. See the OnNewLookupRec event for more details.

The default value is csDropDown.

Comments

As in the original TDBLookupCombo, if the value of the LookupDisplay property differs from the value of the LookupField property then database lookup combo box will function as if its Style is csDropDownList, regardless of the value of the Style property.

Another behavior of the original control was that if the DataSource was not assigned and the Style was set to csDropDownList then the control would function as if it were a csDropDown. This last behavior has been modified. Now if no DataSource is defined a csDropDownList remains a csDropDownList.

Also in the original TDBLookupCombo when the style was set to csDropDownList the <home> and <end> keys did not navigate to the beginning and end of the list. This has been corrected in TDBLookupComboPlus. In the TDBLookupComboPlus if the Style property is set to either csDropDownList or csIncSearch (the readonly styles) the <home> and <end> keys navigate the list. If the Style is set to either csDropDown or csIncSrchEdit (the read/write styles) then the <home> and <end> keys navigate the edit box.

All four of the styles support a sorted list by assigning a value to LookupIndex.

Example

This example changes the style to csIncSearch:

procedure TForm1.DBLookupComboPlus1Click(Sender: TObject);

begin

 DBLookupComboPlus1.Style := csIncSearch;

end;

TitleColor

Declaration

property TitleColor :TColor;

Description

The TItleColor Property determines the background color of the FixedRows or Title section of the drop down list. See also color property for more information.

Value Property

Declaration

property Value : String;

Description

Run-time only. The value of the Value property is depends on how the LookupActive property is set. If LookupActive is TRUE then Value contains lookup value taken from the selected row in Col[0] of the strings grid. If LookupActive is set to FALSE then the Value property contains the contents of the selected row in Col[1] of the strings grid. As the user moves through the drop down grid, the value of the Value property changes.

Methods

AddRow Method

Declaration

function AddRow(Const Values: array of String) : Integer;

Description

The AddRow method adds a row of data to the end of the list. You must insure that there is room for the new row by setting the RowCount property to at least one more than the current number of rows in the string array.

The Values parameter is an open array of string so you can add rows of any number of elements, simply separate the values with commas. For example

result := ComboBoxPlus1.AddRow(['12', 'Apples', 'Oranges', 'Bananas', 'Pears']);

would add a row with 5 elements of data. You must ensure that there are enough columns defined in your string array to hold all the data using the ColCount property.

Returns the number of the new row of data.

The AddRow method is simply a convenience. You could also add data by using the Cells, Cols, or Rows properties and using the methods available to any TStrings Object.

Note that if you need to add data for an element in the array that appears in the list as a blank then you must fill that element with 2 spaces.

See the example below.

ClearGridData Method

Declaration

procedure ClearGridData;

Description

ClearGridData is provided a a fast way to delete all the strings in the strings array associated with the drop down list.

See the example below.

SizeGridToData Method

Declaration

procedure SizeGridToData;

Description

Use SizeGridToData to remove any unused rows or columns from the string array attached to the drop down grid.

See the example below.

Example for AddRow, ClearGridData and SizeGridToData Methods

This example first clears the data in the drop down lists array of strings, then adds new data and finally resizes the array so there is no empty space.

procedure TForm1.LoadDropDownData(Combo : TComboBoxPlus; ColsOfData : Integer);

begin

 {Flush the old data}

 Combo.ClearGridData;

 {Make sure the allocated storage is big enough}

 Combo.RowCount := 20;

 Combo.ColCount := ColsOfData + 1;

 {Load the data}

 Combo.AddRow(['0', 'Company' ,'Years' ,'Owner']);

 Combo.AddRow(['1221','Kauai Dive Shoppe' ,'12' ,'Paul']);

 Combo.AddRow(['1680','Island Finders' ,'' ,'Willie']);

 Combo.AddRow(['3158','Action Divers Supply' ,'2' ,'Matt']);

 Combo.AddRow(['2135','Frank''s Divers Supply','8' ,'Frank']);

 Combo.AddRow(['5515','Ocean Adventures' ,'234' ,'Sally']);

 Combo.AddRow(['3042','Gold Coast Supply' ,'4' ,'Lucy']);

 Combo.AddRow(['5432','Divers-for-Hire' ,'6' ,'Laura']);

 Combo.AddRow(['1231','Unisco' ,'4' ,'Susan']);

 Combo.AddRow(['6312','Aquatic Drama' ,'26' ,'Gizmo']);

 Combo.AddRow(['1563','Blue Sports' ,'13' ,'Jim']);

 Combo.AddRow(['1351','Sight Diver' ,'5' ,'Juice']);

 Combo.AddRow(['1384','VIP Divers Club' ,'32' ,'']);

 {Now shring the grid so it's just big enough for the data}

 Combo.SizeGridToData;

end;(New topic text goes here.)

Notice that for cells which should appear as blank the data is entered as two spaces.

Events

OnDrawCell Event

Declaration

property OnDrawCell: TDrawCellEvent;

Description

The OnDrawCell event occurs whenever the contents of the drop down list grid cell need to be redisplayed. For example, it occurs when the user scrolls the list. How a cell is redrawn depends on the value of the ListDefaultDrawing property.

If ListDefaultDrawing is False, you must write the code that handles all drawing within the cell in the OnDrawCell event handler.

OnNewLookupRec Event

Declaration

property OnNewLookupRec: TNewLookUpRecEvent;

Where TNewLookUpRecEvent is defined as

Type

 TNewLookUpRecEvent = procedure(Sender: TObject; var Cancelled: Boolean) of object;

Description

This event applies to the two editable (read/write) styles of the TDBLookupComboPlus controls; csDropDown and csIncSrchEdit. Use this event to add new records to the lookup table. This event has no effect in the non-editable styles; csDropDownList and csIncSearch. See the Styles Property.

In this event handler a new record can be inserted into the Lookup table. This can be done by simply creating a new record and inserting it or by displaying a dialog box for the user to enter the new record. Refer to the example to see how this is done.

If you decide to use this event handler you must follow these rules or it will fail and your application will GPF. Here are the rules:

1.	You must set the canceled return var. The component defaults the value of canceled to True and cancels the edit. This is safe but annoying. You need to set this value to false for the edits to hold.

2.	Insert a new row into the lookup array.

3.	Update the new row with the new lookup value and any other column data.

4.	Set the Value property equal to the value of the field in the new record that corresponds to the data field.

The above steps must happen in stated order. Here are two code templates for OnNewLookUpRec. The first for when the code just creates the record and the second when a dialog box allows the user to create the record. Refer to the code segments in the Example to see two specific examples on implementing this event.

OnPrepareList Event

Declaration

property OnPrepareList : TNotifyEvent;

Description

Use this event when you want to do something special to the lookup table. Specifically this event is useful for preparing a temporary lookup table by filling it with the results from a query.

This event executes just before the sort order specified in the LookupIndex property is applied to the lookup table.

Example

This example uses the OnPrepareList event to fill a temporary lookup table with records.

procedure TForm1.DBLookupComboPlus1PrepareList(Sender: TObject);

begin

 Query1.Close;

 case RadioGroup1.ItemIndex of

 0 : Query1.Params[0].AsString := Something;

 1 : Query1.Params[0].AsString := Something else;

 end;

 Query1.Open;

 { Get the temp table ready for the new data}

 Table1.EmptyTable;

 { Move the data from the query result to the Temp Table}

 BatchMove1.Execute;

end

OnLookupRecChanged Event

Declaration

property OnLookupRecChanged : TLookupRecChangedEvent;

Where TLookupRecChangedEvent is defined as

 TLookupRecChangedEvent = procedure(Sender: TObject; byIncSearch: Boolean) of object;

Description

The byIncSearch parameter is true if the event was fired by a keystroke causing an incremental search. If byIncSearch is false it means the event was fired by the user navigating through the drop down list with either a mouse click or the arrow keys.

This event replaces onGridSelect and is more flexible. The primary use of this event is to update other fields with information from the just selected lookup record. Use this event when you want information on multiple fields in the lookup record.

Example

This example updates the data displayed in the EditDept and EditState fields in Tform1 when ever the user selects a row in the drop down list only when the row is selected with the mouse or arrow keys.

procedure TForm1.DBLookupComboPlus1LookupRecChangedt(Sender: Tobject; byIncSearch : Boolean);

begin

 if not byIncSearch then

 begin

 EditDept.Text := LookupDBTableFieldDept.Value;

 EditState.Text := LookupDBTableFiedlState.Value;

 end;

end;

How to Order.

The shareware versions of these components are fully functional inside the Delphi environment. Attempts to run this component will fail in a stand-alone executable. If you find this control useful and would like to use it in your applications you must register and order the regular version.

For $30(U.S.)(Calf. residents + 7% SST), you will receive the full version of both components plus any updates for the next year. MasterCard and Visa are accepted. The components will be sent to you by e-mail. The source code is available for an additional $15 (such a deal).

If you are on CompuServe also can go SWREG and put it on your CompuServe bill for a (10%) handling charge.

	SWREG # 8172 - Component without source	$33.00

	SWREG # 8173 - Component with source	$50.00

You can also purchase the DBComboBoxPlus and ComboBoxPlus along with the original DBLooupComboPlus component as a set in the "Binford 2000 Combobox Combo" at a discount over purchasing the components separately. This super combobox combo is only $40 without the source (a $10 savings) or $60 with the source (a $15 savings). This special combo deal is also available through the SWREG program, just search for "Binford" or CompuServe ID number 75664,1224. See below for more information on the DBLookupComboPlus component.

To order use the form found at our web site (www.o2a.com) or send an e-mail to sales@o2a.com or 75664.1224@compuserve.com including your credit card number, expiration date, name as it appears on the card. We would also like your mailing address and voice phone number but it's not completely necessary (you become a pin on a map of the world). If you are uncomfortable with the e-mail idea you can fax the info to 415-695-9934, or, worse yet, write us at the address below.

Please e-mail your requests. Any technical questions regarding this component should forwarded to support@o2a.com.

The above prices include all updates and upgrades to the component for a year and technical support via CompuServe.

Visit our Web Site

You will also find answers to frequently asked questions on our web site http://www.o2a.com. We update this area on a regular basis.

Other Components From Out & About Productions

TDBLookupComboPlus - The original that started it all. An enhanced version of the original DBLookupCombo. All the features of the above components plus the drop down list is also data aware. This is our best selling component and for good reason.

Other features include the ability to add new lookup records on the fly, searches on numeric values, ability to populate the lookup list from a query, enhanced list alignment capabilities, Plus much, much more. A must have for your component arsenal. Thousands of happy Delphi developers can't be wrong. This is very cool!

Search for and download DBLUP2.ZIP from the Delphi forum on CompuServe or you favorite Delphi FTP or our Web sight: http://www.o2a.com

DTalk ™ - Speech enable your applications with the only component set that lets Delphi programmers easily add both speech recognition and text-to-speech by implementing the new Microsoft Speech API (SAPI).

Speech adds a whole new dimension to user interface design, and is widely touted as the next major trend in user friendly software engineering. Expected uses include talking interface elements such as error messages, controls, online help, and ad hock database reports, as well as voice driven menus, macros, and agents.

Microsoft has recently made both its Text to Speech (TTS) and Speech Recognition (SR) engines available for free over the Internet. IBM is also currently making its SR engine available for free download. DTalk users will be able to use these or any of a wide variety of existing SAPI compliant speech engines. DTalk implements all of the low level SAPI interfaces resulting in a robust feature set that provides the developer with maximum flexibility. For more information on DTalk go to our web site http://www.o2a.com/dtalk.htm

TTUtility - Repair Paradox Tables from your Delphi App. This latest version of our popular Paradox table repair component set makes implementing Paradox table repair even easier than before with a new TUtility Dialog component. Single or batch table verify & repair, latest BDE support, lots of demo projects, complete online help, index check and regen, and much more. See why thousands of Paradox\Delphi developers have chosen this simple but powerful solution. If you are interested in the TTUtility component search for and download TU.ZIP from the Delphi Lib on CompuServe or from our web site on the Internet: http://www.o2a.com

How to contact us.

Orders:

CompuServe ID 75664,1224

Internet: sales@o2a.com

Fax: 415-695-9934

Technical Support:

CompuServe ID 70664,1453

Internet : support@o2a.com

Web Site:

http://www.o2a.com

Snail Mail:

Out & About Productions

1038 Noe Street

San Francisco, CA 94114

TDBComboBoxPlus, ComboBoxPlus, DTalk, TTUility, and TDBLookupComboPlus, their help files, and documentation are copyright © 1995, 1996, 1997, 1998, by Out & About Productions and are protected by international law. All Rights Reserved. Logos and product names are trademarks of Out & About Productions. Delphi, Delphi 2.0, Delphi 3.0, Delphi 4.0 and C++Builder, Inprise International, are the registered trademarks of Inprise Inc. Inprise Inc is not affiliated with and in no way endorses "Out & About Productions". All other trademarks are the sole property of their respective owners. Quicken is a registered trademark of Intuit Inc.

