CTLibComponents

Non-BDE Delphi access to Sybase and Sybase SQL AnyWhere

Stephan Marais

Table of Contents

1CTLibComponents

Introduction
4
About the author
6
Technical support
6
About the documentation
6
Wish list
6
Bugs
6
Release notes
7
My wish list and planned features
7
History
7
April 12 1999
7
April 29 1999
7
April 30 1999
7
May 12 1999
7
May 18 1999
7
May 19 1999
7
May 21 1999
7
May 29 1999
7
May 31 1999
7
June 4 1999
7
June 6 1999
7
June 9 1999
8
June 11 1999
8
June 19 1999
8
June 22 1999
8
June 26 1999
8
June 28 1999
8
June 30 1999
8
July 2 1999
8
July 4 1999
8
July 5 1999
8
July 10 1999
8
July 14 1999
9
July 27 1999
9
July 30 1999
9
August 2 1999
9
August 7 1999
9
August 9 1999
9
August 13 1999
9
Known Bugs
11
Limitations and Hints
11
Installation
11
Licensing
12
Sybase Open Client-Library – The beginning
14
Control Structures
14
Steps to connect and send a command
15
Setting up the CT-Lib programming environment
15
Installing Message Callback routines
15
Connecting to a server
15
Sending a command to the server
15
Processing the results
15
Finishing up
15
Converted header files
16
Classes and Types
17
Classes
17
Types
18
CTLibContext
20
Properties
20
Methods
20
Events
20
CTLibDatabase
21
Properties
21
Methods
25
Events
26
CTLibBulk
27
Properties
27
Methods
28
Events
29
CTLibChkListBox
30
Properties
30
Methods
31
Events
31
CTLibComboBox
32
Properties
32
Methods
33
Events
33
CTLibGrid
34
Properties
34
Methods
35
Events
35
CTLibListBox
36
Properties
36
Methods
37
Events
37
CTLibObjInfo
38
Properties
38
Methods
38
Events
39
CTLibFunctions
40
Properties
40
Methods
40
Events
42
CTLibTools
43
Properties
43
Methods
43
Events
43
CTLibQuery
45
Properties
45
Methods
47
Events
47
CTQuery
48
Properties
48
Methods
49
Events
49
CTStoredProc
50
Properties
50
Methods
51
Events
51
CTTable
52
Properties
52
Methods
53
Events
53
CTDataSet
54
CTSqlMon
54

Introduction

In previous versions of Delphi, the database VCL architecture was closed, so it was very difficult to access Sybase without using BDE components. All the database-related components were designed around and strongly tied into the BDE. That was the motivation of creating components to access Sybase without using the BDE.

Delphi 3 and 4 made it possible to create TDataset descendant components, which was not very high on my priority list. To create TDataset descendants is not a trivial task, and for that reason, I have left it until it was really necessary and needed.

This document is not to discuss the TDataset class or the Sybase Open Client Libraries. For more detail please refer to Delphi and Sybase reference manuals. I will, however, discuss the basic steps on using the Sybase Open Client-Libraries to connect to Delphi.

The reference manuals I used to develop these components are:

Delphi Developer’s Handbook – Marco Cantu

Borland Delphi 4 Developer’s Guide – Teixeira & Pacheco

A paper by Tony BenBrahim

Sybase Open Client-Library/C Reference Manual

The components in the CTLibComponents Pack connect directly to Sybase and/or Sybase SQL Anywhere and there is no DLL or "BDE", only the Sybase Open Client DLL (LIBCS.DLL, LIBCT.DLL and LIBBLK.DLL). All these components compile into the EXE without any runtime files necessary to run the application. They work with System 10.x, System 11.x and SQL Anywhere 5.5 and up

To use these components, the Sybase Open Client (CT-Lib. CS-Lib and Bulk-Lib) software must be installed on the client PC. Make sure that above mentioned DLL’s are included in the PATH.

The CTLibComponents Pack was written entirely in Delphi and has been designed to work with Delphi 4.x. The components have been tested well enough to be used in production environments. I have tried to replicate most of the TDataset descendant component methods and properties, so if you decide to start using these components, and you have existing applications, the needed changes will be minimal.

I have developed the components using Delphi 4.0, Sybase 11.01, Open Client 10.03 and Windows NT 4.0.

I have also done some limited tests with SQL Anywhere 5.5 and Adaptive Server Anywhere 6.02.

When I started developing these components, I planned to make it commercial, but after a while I realized that if I only want the credit, the best is to make it freeware, and to ask everyone that uses it, to let me know. So if you use it, PLEASE let me know. The source is not free. If you are interested in purchasing it, let me know.
About the author

My name is Stephan Marais. I currently live with my wife Juanita, in New Jersey, USA and work at Citibank in Long Island City, New York as a developer using Sybase, SQR, Uniface, VMS and Unix. Unfortunately (or fortunately), I do not do any Delphi development at work, so it became my hobby.

I have developed various components ranging from system information to database components. All the components I have developed are free and most of them include the source code. If the source code is not included in the zipped files on my home page, you can e-mail me and I will mail it to you. The only exception is the CTLibComponents Pack. The source is not free.

I do not expect any payment for the components, but if you or your company decide to use any of my components, please send me a letter so that I can use it as a reference. Who knows, some day I might apply for a Delphi position, and not currently doing Delphi development as a full-time job, the references might come in handy.

E-mail: fmarais@idt.net
Home page: http://www.geocities.com/~maraisfamily

Technical support

Being freeware does not mean that I will not support the components. But being freeware, it also means that bug fixes and enhancements will not take priority above my daily doings. If the components are used in production environments, let me know and I will give special attention to the problems and requests. I will try and give support as often and as good as I can.

If you have purchased the source code, it will be my top priority to fix any bugs.

I will not always submit changes and updates/fixes to the Delphi sites on the Internet. Please visit my home page to get the latest fixes and updates.

About the documentation

I will try to update this document every time I make a few changes or enhancements. I have taken most of the information from the CTLibComponents Pack help files, but there might be some differences between this document and the help files. I do not spend a lot of time keeping them in sync.

Because CTTable, CTQuery and CTStoredProc are TDataset descendants, I have not included all the inherited properties, methods and events of TDataset in this document or the help file. I did include some of them. Please refer to the Delphi help files for more information.

Wish list

Users of CTLibComponents Pack can send me their request via e-mail. No suggestion too small...no suggestion too large.. (
Bugs

If you find a bug, and I am sure there are still quite a few, please send me a detailed description and sample code. It is very difficult to fix a problem if I can not replicate it. I can not promise that the bug will be on top of my priority list, but if it is really urgent, I might consider putting it on top (
Release notes

My wish list and planned features

· Text and Image support.

· A SQL Builder utility.

· COM objects

History

April 12 1999

· Completed the first set of Components

April 29 1999

· Completed the first version of CTTable, a TDataset descendant

· Added ConnectError and RowCount properties to TCTLibDataBase

· Fix the “cursor” error in TCTLibQuery. The prior version did not work when more than one query used the same connection

April 30 1999

· Added TypeErrCont and TypeErrShow to CTTable

May 12 1999

· Added Monitor property to CTTable

· Created CTSqlMonitor utility

May 18 1999

· Fixed Close method on CTLibDatabase. I closed ALL the datasets, not only the datasets associated with the specific database

· Completed a read-only version of CTQuery

May 19 1999

· Added Text and RowsAffected to CTQuery

May 21 1999

· Fixed pointer leaks on CTDataset (Base class of CTTable and CTQuery). I forgot the FreeMem()

· Added Beta version of parameters to CTQuery. It was added to the base class, CTDataset, but in the protected section in the interface

May 29 1999

· Completed a beta (read-only) version of a TDataset descendant stored procedure, CTStoredProc.

· CTQuery is now out of Beta.

May 31 1999

· Added CTObjInfo. A Component that supplies information about various database objects.

June 4 1999

· Fixed FirstRow and LastRow properties of CTLibBulk

June 6 1999

· Added TransLevel property to CTLibDatabase.

· Added IdentityInsert method to CTLibDatabase.

June 9 1999

· Compiled Delphi 3 version

June 11 1999

· Decided to make the components freeware.

June 19 1999

· Change CTDataset (CTTable, CTQuery and CTStoredProc) to support international decimal characters. CTTable now uses Prepare for modifications.

June 22 1999

· Added GetCreateTableText to CTObjInfo.
· Added ColIsIdentity, ColIsTimeStamp and ColCanBeNull properties to CTLibQuery.
June 26 1999

· Added Export method to CTLibGrid
· There was a problem when Non-TDataset components were used on the same CTLibDatabase connection as TDataset components. When a Non-TDataset component reached the end of the results, the TDataset components also detected a END_OF_DATA when attempting to scroll forward.
· Enhanced the Exception handling. No more “two messages” when an error occurs in the TDataset components. The only exception to this is when a user does not have insert/delete/update permission to a table. Two messages will be displayed. The first one Sybase’s message and the second one a message saying, “no modifications were done”. This is because Sybase DOES NOT return these kinds of messages as errors.

June 28 1999

· Added UniqueName to CTLibDatabase. This can be used in a MDI application when CTLibDatabase components must be created on the fly.
June 30 1999

· Added HorizontalScrollbar to CTLibListbox and CTLibChkListBox. Credit to Ajay Tandon.
July 2 1999

· Added GetSelectText to CTLibObjInfo.
July 4 1999

· Added TrimResults to CTLibQuery, CTLibListBox, CTLibChkListBox, CTLibComboBox and CTL:ibGrid.
July 5 1999

· Added RdbmsShow and RdbmsPrompt to CTLibDatabase.
July 10 1999

· Changed all the messages to Exceptions. Changed the Sybase error handling to In-line handling. The only potential problem with this is when two components use the same database connection, and they are both executing, the first error can clear the messages of the second component. I have not found a situation where this happened. If it happens to you, PLEASE contact me so that it can be fixed. The only exception for the Exceptions is a CTLibGrid executing with Background to True. Only a message box will appear, no exception.

· Removed CursorName from CTLibQuery.
· Added OnDbError event to CTTable, CTQuery and CTStoredProc. This event will be called just before a exception is raised, caused by a Sybase error.
· Enhanced the support for SQL Anywhere. It now also supports Adaptive Server Anywhere 6.02. When you create a SQLAnywhere database and select Emulate ASE, change the new property on CTLibDatabase, EmulateASE to True. I have found a few CT-Lib differences with the new version.
· Added a new ConProps property to CTLibDatabase, called cpConnect_Only. When True, the database only connects, it does select the DbVersion and does not do a use DbName.
· Added a method GetIndexColNames to CTLibObjInfo. This returns all the columns for the specified index.
· Added support for design time activation of CTQuery and CTStoredProc.
· Enhanced the Export method of CTLibGrid. It now supports export to a specified character delimited file. Export to Excel is still not supported.
· Changed the database login box. It now includes the Rdbms.
· Fixed quite a few small bugs.
July 14 1999

· Added GetTableColumns to CTLibObjInfo.
July 27 1999

· Added MsgDialogs property to all CTLib components. Setting this property displays an enhanced error or message dialog box. In the future I will add the option for the developer to use his/her own dialog box.
· Added MaxRows property to CTLibGrid.
· Added DisconnectAtEnd to CTLibGrid.
July 30 1999

· Added OnDbError, AfterDbError, OnDbMessage and AfterDbMessage to all the CTLib components. DbError events will be called when the server sends back a error message and DbMessage events will be called when the server send an information message.
· Added DbError and DbMessage to all CTLib components.
August 2 1999

· Added ShowDbMessages property to all CTLib components. Use this property to specify if the server messages must be displayed or not. A silent exception will still be raised if an error occurs.
August 7 1999

· Added CTLibError public field to all the components. This field is an Open-Client class structure that contains the complete Sybase Open Client error structure.
· Added ClearCTLibError method to clear the CTLibError structure.
August 9 1999

· I removed the package "Smart" from the CTLib package. I do not know why it was in there.

· Fixed a problem with CTLibQuery and some of the other non-TDataSet components to display LARGE float values.

· Fixed CTLibDatabase to only read unique values from the interface file.

· Added RowNumber to CTLibQuery. This property contains the number of rows returned so far. Using this property you do not need a counter.

· Added SelectDb to CTLibObjInfo. This property can either contain the database name or database.owner and will be used in the information extraction.

August 13 1999

· Added SortDirection to CTTable. This property is used when an index is used. It selects the data either Ascending or Descending.

· Added CTLibFunctions component. This component contains many server specific functions. The functions include DateAdd, dateDiff, Stuff, Replicate etc.

Known Bugs

· In design time, when the CTDatabase connection is left open and you Run the application, the CTQuery hangs

· When using a CTTable and a Insert/Update/Delete error occurs, the application SOMETIMES hangs when it is closed. This is only found with SQL Anywhere 5.5

· When you use Adaptive Server Anywhere 6.x and created the database to emulate Sybase Adaptive Server, set EmulateASE True. Symptoms of not doing so is that setting the Active property of the TDataset descendant components takes a very long time with large tables.

Limitations and Hints

· Do NOT set poNoExec ProcOptions for CTLibDatabase when using any TDataset component.

· Do NOT use a CTLibQuery component, with IsCursor property set to False, on the same connection as a TDataset (CTQuery, CTTable and CTStoredProc), while the dataset is open. The TDataset descendant components use Sybase cursors and only multiple cursors can be active/open on a connection. CTLibGrid uses a CTLibQuery with IsCursor to False. CTStoredProc currently does NOT use cursors.

Installation

In the Delphi menu, select:

Component > Install Package > Add

Select the CTLib.bpl file and select OK.

Merging the help file with Delphi involves two steps.

The first step is to add two entries under the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\help registry key. One for the help file, the other for the contents file. Each entry specifies the name of the file and its location on the system:

File

String Value
CTLib_Comps.hlp
C:\CTLIB\Help (path of the help file)

CTLib_Comps.cnt
C:\CTLIB\Help (path of the contents file)

The second step is to merge the component help file with Delphi’s. This step is necessary in order for Delphi to provide context-sensitive help for the components. This is accomplished by adding two lines to the Delphi4.cnt file:

Include ctlib_comps.cnt

Link ctlib_comps.hlp

When adding these lines to the contents file, make sure the last line ends with a CR-LF pair. Otherwise the last command will not be executed.

Licensing

Copyright (c) 1999 Stephan Marais

BEFORE PROCEEDING WITH THE INSTALLATION AND/OR USE OF THIS SOFTWARE, CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT AND LIMITED WARRANTY (The "Agreement").

BY INSTALLING OR USING THIS SOFTWARE YOU INDICATE YOUR ACCEPTANCE OF THIS AGREEMENT. IF YOU DO NOT ACCEPT OR AGREE WITH THESE TERMS, YOU MAY NOT

INSTALL OR USE THIS SOFTWARE!

LICENSE

This software, including documentation, object code and/or additional materials (the "Software") is owned by Stephan Marais.

This Agreement does not provide you with title or ownership of Product, but only a right of limited use as outlined in this license agreement. Stephan Marais hereby grants you a non-exclusive, royalty free license to use the Software as set forth below:

· Integrate the Software with your Applications, subject to the redistribution terms below.

· Modify or adapt the Software in whole or in part for the development of Applications based

on the Software.

· Use portions of the Demo Programs in your own products and libraries.

REDISTRIBUTION RIGHTS

You are granted a non-exclusive, royalty-free right to reproduce and redistribute executable files created using the Software (the "Executable Code") in conjunction with software products that you develop and/or market (the "Applications").

RESTRICTIONS

Without the expressed, written consent of Stephan Marais, you may NOT:

· Distribute modified versions of the Software, in whole or in part.

· Rent or lease the Software.

· Sell any portion of the Software on its own, without integrating it into your Applications as Executable Code.

SELECTION AND USE

You assume full responsibility for the selection of the Software to achieve your intended results and for the installation, use and results obtained from the Software.

LIMITED WARRANTY

THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE

ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PRODUCT IS WITH YOU.

SHOULD THE PRODUCT PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING OR ERROR CORRECTION.

STEPHAN MARAIS DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR FREE.

No oral or written information given by Stephan Marais shall create a warranty.

LIMITATION OF REMEDIES AND LIABILITY.

IN NO EVENT SHALL STEPHAN MARAIS, OR ANY OTHER PARTY WHO MAY HAVE DISTRIBUTED THE SOFTWARE AS PERMITTED ABOVE, BE LIABLE FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE (INCLUDING

BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR FAILURE OF THE SOFTWARE TO OPERATE WITH ANY OTHER PRODUCTS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

If you have any questions regarding this agreement, please contact Stephan Marais e-mail address: fmarais@idt.net
Sybase Open Client-Library – The beginning

Client/server architecture is divided between “clients” and “servers”.

Clients make requests of servers and process the results for those requests returned by the server.

Servers respond to the requests by returning data or other information to the clients. Servers can also take action.

SYBASE Open Client provides custom applications, third-party products and other SYBASE products with the interfaces needed to communicate with SYBASE SQL Server and SYBASE SQL AnyWhere.

Open Client consists of two components, programming interfaces and network interfaces. The CTLibComponents make use of the programming interface.

The programming interface is made up of three libraries: Client-Library, DB-Library and CS-Library.

· DB-Library (DB-Lib) is a collection of routines for use in writing client applications. DB-Lib includes a bulk copy library and the two-phase commit special library.

I have developed a set of components with DB-Lib and it also includes the source code. There are no TDataset descendant components and it includes a few “data-aware” components. They can be found on http://www.geocities.com/~maraisfamily/delphimain.html
· Client-Library (CT-Lib) is a collection of routines for use in writing client applications. CT-Lib is a new library, designed to accommodate cursors and other advanced features.

· CS-Library is a collection of utility routines that are useful to both client and server applications. All CT-Lib applications will include at least one cal to CS-Library, because CT-Lib routines use a structure that is allocated in CS-Library.

A fourth library, Bulk-Library, is also used by the CTLibBulk component. The Bulk-Library provides routines that allow CT-Lib and Server-Library applications to use the SQL Server bulk-copy routines. It allows high-speed data transfer between an application and database tables. It can be used as an alternative to the SQL insert and select commands.

Please keep in mind that I am NOT a C programmer, and that many of the CT-Lib calls could have been called in a different way. But it works well the way I do it. I would welcome suggestions on better and more efficient ways.

As mentioned before, this document will not discuss the detail, but just enough to understand how to use the Open Client-Library with Delphi.

Control Structures

To send commands to a server, a CT-Lib application must allocate three types of structures:

· CS_CONTEXT. A structure which defines a particular application “context”, or operating environment. The CTLibContext component implements the behavior of a CS_CONTEXT structure. All or most of the components in the CTLibComponents pack contains a private Context property.

· CS_CONNECTION. A structure which defines a particular client/server connection. The CTLibDatabase component implements the behavior of a CS_CONNECTION structure. All or most of the components in the CTLibComponents pack contains a private Connection property.

· CS_COMMAND. A structure which defines a “command space” in which commands are send to the server.

· CS_BLKDESC. A structure used by all bulk copy operations and implemented in the CTLibBulk component.

All four these structures are defines in the Delphi components as type Pointer.

Steps to connect and send a command

The components have been designed for the Intel platform. The following steps are involved to connect and execute a command:

· Set up the CT-Lib programming environment. This is implemented in the CTLibContext.Pas unit.

· Define error handling. This is implemented in the CTLibContext.Pas unit with the ct_callback routine.

· Connect to a server. This is implemented in the CTLibDatabase.Pas unit.

· Send a command to the server.

· Process the results.

· Finish and clear up

Setting up the CT-Lib programming environment

cs_ctx_alloc is used to allocate a context structure. ct_init has to be called to initialize CT-Lib.

CTLibDatabase automatically creates a CTLibContext component with the name “default”.

Installing Message Callback routines

ct_callback is used to install a message callback routine. The following two defined functions are used:

server_msg_handler to handle server error and informational messages.

cl_err_handler to handle CT-Lib error and informational messages.

Connecting to a server

ct_con_alloc allocates a connection structure. A Connection structure contains information about a particular client/server connection.

ct_con_props sets and retrieves the values of a connection’s properties.

ct_connect opens a connection to a server, using the properties set by ct_con_props.

Sending a command to the server

Allocate a command structure using ct_cmd_alloc.

Initiate the process of sending a non-cursor command using ct_command.

ct_send sends a command to the server.

Processing the results

You have to use a loop controlled by ct_results. Inside the loop you have to look at the current result type. Different result types need different processing.

Call ct_res_info to get the number of result columns. Call ct_bind to bind each result column to a program variable.

Call ct_fetch to fetch data until end-of-data.

Finishing up

Call ct_cmd_drop to de-allocate a command structure.

Call ct_close to close a server connection.

Call ct_con_drop to de-allocate a connection structure.

Call ct_exit to terminate CT-Lib.

Call ct_ctx_drop to de-allocate the context structure.

Converted header files

The files LibCS.Pas, LibCT.Pas, SybType.Pas and LibBlk.Pas contain all the Open Client-Library calls needed and more (with compliments to Lennart Johansson).

Classes and Types

Below is a list of the classes and types used in the various components. They can be found in the individual component units or in CTLib_Components.dcu

Classes

A CS_SERVERMSG structure contains information about a server error or informational message. In the CTLib component pack, it is implemented to be used as error messages. The reason for that is that a single command can generate multiple informational messages. All the informational messages for a single command are appended to one single String property, DbMessage. When an error occurs, a complete error string is returned in DbError, a String property. For an error, the complete Sybase CS_SETVERMSG structure is also available in a public field, CTLibError.

CS_SERVERMSG = record

 MsgNumber :CS_MSGNUM;

 State :CS_INT;

 Severity :CS_INT;

 Text :Array[0..CS_MAX_MSG-1] of Char;

 TextLen :CS_INT;

 SvrName :Array[0..CS_MAX_NAME-1] of Char;

 SvrnLen :CS_INT;

 Proc :Array[0..CS_MAX_NAME-1] of Char;

 ProcLen :CS_INT;

 Line :CS_INT;

 Status :CS_INT;

 SqlState :Array[0..CS_SQLSTATE_SIZE-1] of CS_BYTE;

 SqlStateLen :CS_INT;

end;

where:

MsgNumber is the server message number.

State is the server error state.

Severity is the severity of the message.

Text is the text of the message.

TextLen is the length, in bytes, of Text.

SvrName is the name of the server that generated the message. This is the name of the server as it appears in the interfaces file. If you issue the SQL command select @@servername and it returns a servername, that is the name that you will see in SvrName.

SvrnLen is the length, in bytes, of SvrName.

Proc is the name of the stored procedure that caused the error, if any.

ProcLen is the length, in bytes, of Proc.

Line is the line numbre, if any, of the line that caused the error. Line can be a line number in a stored procedure or a line number in a command batch.

Status is a bitmask used to indicate various types of information, such as whether or not extended error data is included. Not used by CTLib components.

SqlState is a byte string describing the error. Not all server messages have SQL state values associated with them. If not SQL state value is associated with a message, SqlState has the value ‘ZZZZZ’

SqlStateLen is the length, in bytes of the SqlState string.

Types

CS_MSGNUM = LongInt

CS_INT
= Integer

CS_MAX_MSG =1024

CS_MAX_NAME =132

CS_SQLSTATE_SIZE
= 8

CS_BYTE
= Byte

CS_CONTEXT = Pointer

CS_CONNECTION
= Pointer

CTObjectName
= String[30]

TCTFileName

= String

TConProp = (cpConnect_Only, cpAsync_Notifs, cpBulk_Login,

 cpDiag_Timeout, cpExtra_Inf, cpHidden_Keys,

 cpLogin_Status, cpSec_Encryption, cpSec_Negotiate);

TConProps = set of TConProp;

TProcOption = (poAnsiNull, poAnsiPerm, poArithAbort, poArithIgnore,

 poChainXActs, poFipsFlag, poForcePlan, poFormatOnly,

 poNoCount, poNoExec, poParseOnly, poQuotedIdent,

 poRestrees, poShowPlan, poStatsIo, poStatsTime,

 poStrRTrunc, poTruncIgnore);

TProcOptions = set of TProcOption;

TTransLevel = (tlLevel1, tlLevel3);

TSupportedRdbms = (srSybaseSQLServer, srSQLAnywhere);

TExportFormat = (efFixed, efTab, efComma, efNone, efExcel, efChar);

TExportRange = (erSelected, erAll);

TcursorStat = (ctNone, ctDeclared, ctOpen, ctClosed, ctRdOnly,

 ctUpdatable);

TCursorStats = set of TCursorStat;

TColStat = (csHidden, csKey, csVersion_Key, csNoData, csUpdatable,

 csCanbeNull, csDescIn, csDescOut, csInputValue,

 csUpdateCol, csReturn, csTimestamp, csNoDefault,

 csIdentity);

TColStats = set of TColStat;

TFormat = (bcNative, bcCharacter, bcNone);

TBulkDirection = (bdIn, bdOut);

TColStat = (csHidden, csKey, csVersion_Key, csNoData, csUpdatable,

 csCanbeNull, csDescIn, csDescOut, csInputValue,

 csUpdateCol, csReturn, csTimestamp, csNoDefault,

 csIdentity);

TColStats = set of TColStat;

TMsgDialog = (mdEnhMsg, mdEnhErr);

TMsgDialogs = set of TMsgDialog;

TShowDbMessage = (smDbMsg, smDbErr);

TShowDbMessages = set of TShowDbMessage;

TDebugOption = (doAll, doApi_States, doDiag, doError, doMem,

 doNetwork, doProtocol, doProtocol_States);

TDebugOptions = set of TDebugOption;

CTLibContext

A CTLibContext component is used to store configuration parameters that describe a particular “context” or operating environment, for a set of server connections. On most platforms, an application can have multiple contexts, although a typical application will need just one.
Properties

CharSet

:String;

Contains the name of the client character set from the Context structure.

ContextName

:String[30];

Set ContextName to a unique and meaningful name that can be used to link databases to the session. The very first CTLibContext component (created by CTLibDatabase) will have a ContextName of default.

CTLibVersion

:String;
Contains the version of CT-Lib in use.

IniFile

:String;

The path and the name of the Interfaces file.
Language

:String[30];
Contains the National Sybase SQL Server Language. This property will only be used if set BEFORE the connection.
MaxConnect

:Integer;

The maximum number of connections for this context.
SortOrder

:String[30];

The sort order defaults to binary.

General purpose dictionary sort order for use with several Western-European languages including English, French, and German. Uses the ISO 8859-1 character set and is case-sensitive.

TimeOut

:Integer;

The TimeOut value.
Methods

No methods.

Events

No events.

CTLibDatabase

TCTLibDatabase provides discrete control over a connection to a single database in a database application.
Properties

AppName

:String[30];
The application name used when logging into the server.

CharSet

:String;
Contains the name of the client character set from the context structure.
Connected

:Boolean;
True if the CTLibDatabase component is connected to the database Server. Set Connected to True to establish a database connection. Set Connected to False to close a database connection. An application can check Connected to determine the current status of a database connection. If Connected is True, the database connection is active; if False, the connection is inactive.
ConnectError

:Boolean;
When TRUE, a message will be displayed when the connection failed.

ConProps

:TConProps;
A list of the connection properties values. Connection properties define aspects of Client-Library behavior at the connection level.

cpAsync_Notifs

Whether a connection will receive registered procedure notifications asynchronously.

Not used yet.

cpBulk_Login

Whether or not a connections is enabled to perform bulk "in" operations.

cpCharsetCnv

Whether or not character set conversion is taking place.

cpDiag_Timeout

When in-line error handling is in effect, whether Client-Library should fail or retry on timeout errors. Not used yet.

cpExtra_Inf

Whether or not to return the extra information that's required when processing Client-Library messages in-line using SQLCA, SQLCODE and SQLSTATE. Not used yet.

cpHidden_Keys

Whether or not to expose hidden keys.

cpSec_Encryption

Whether or not the connection will use encrypted password security handshaking.

cpSec_Negotiate

Whether or not the connection will use trusted-user security handshaking.

Context

:CS_CONTEXT;
The CS-Library allocates a context structure. A context structure is used to store configuration parameters that describe a particular “context”, or operating environment, for a set of server connections. An application can have multiple contexts, although a typical application will need just one.

This property is read-only. It can be used to assign a context value to most other CT-Lib components.

ContextName

:String[30];
Set ContextName to a unique and meaningful name that can be used to link databases to the session. The very first TCTLibContext component (created by CTLibDatabase) will have a ContextName of default
CTLibVersion

:String;
Contains the CT-Library version in use. Read Only.
DateTime

:String;
Retrieves the current database date and time.

DbError

:String;
Contains the last Sybase error string.

DbMessage

:String;
Contains the last Sybase message string.

DbName

:String[30];
If CTLibDatabase specifies the active database name of the connection, else specifies the TCTLibDatabase component to use for the connection.

DbVersion

:String;
Contains the SQL Server version in use. Read Only.
Debug

:Boolean;
Specifies if the debug version of Open-Client will be used. If TRUE, and the debug version is NOT used, a Open-Client ct_fetch() error will be displayed.
DebugFile

:String;
The full path and name of the file to which the component should write the generated debug information.
DebugOptions

:TDebugOptions;
Manages debug library operations, allowing an application to enable an disable specific diagnostic subsystems and send the resultant trace information to files.

This functionality is available ONLY from within the debug version of Client-Library.

Because the debug version of Client-Library performs extensive internal checking, application performance will decrease when the debug library is in use. The level of performance decrease depends on the type and number of tracing subsystems that are enabled.

The Sybase Open-Client software ships with the debug and non-debug versions of the libraries.

doAll

Takes all possible debug options.

doApi_States

Prints information relating to Client-Library function-level state transitions.

doDiag

Prints message text whenever a Client-Library or server message is generated.

doError

Prints trace information whenever a Client-Library error occurs. This allows a programmer to determine exactly where an error is occurring. The messages refer to Client-Library c units and NOT the Delphi application.

doMem

Prints information relating to memory management.

doNetwork

Prints information relating to Client-Library’s network interaction.

doProtocol

Captures information exchanged with a server in protocol-specific (for example, TDS) format. This information is not human readable.

Not currently supported.

doProtocol_States

Prints information relating to Client-Library protocol-level state transitions.

ForceClose

:Boolean;
If TRUE, the connection is closed whether or not results are pending, and without notifying the server.
HostName

:String[30];

The host machine name
IniFile

:String;

The path and the name of the Interfaces file.
Language

:String;
Contains the National Server Language. This property will only be used if set BEFORE the connection.
LoginPrompt

:Boolean;

Use LoginPrompt to control the login method for remote database connections. If True, (the default), a standard login dialog box opens when the application attempts to connect to a database. The standard login dialog box prompts for a valid Usernamehlp_TCTLibDatabaseUserName>Main and Passwordhlp_TCTLibDatabasePassword>Main. If the entries provided by the user are not valid, the connection fails.
MaxConnect

:Integer;

The maximum number of connections for this context.
MsgDialogs

:TMsgDialogs;

Use this property to specify if the server messages and errors must be displayed in an enhanced dialog box.

mdEnhMsg

When set, the server messages will be displayed in an enhanced dialog box.

mdEnhErr

When set, the server errors will be displayed in an enhanced dialog box.

PacketSize

:Integer;
Determines the packet size that Client-Library uses when sending Tabular Data Stream (TDS) packets. The default is 512.
Password

:String[30];
Contains the password that will be used during the database connection. Storing hard-coded user name and password entries in the UserNamehlp_TCTLibDatabaseUserName>Main and Password fields can compromise server security.
ProcOptions

:TProcOptions;
A list of the server options. It allows an application to set, retrieve and clear the values of server query-processing options at the connection level.
Rdbms

:String[30];

Specifies the type of RDBMS. Valid values are Sybase SQL Server and SQL Anywhere.
RdbmsPrompt

:Boolean;

If True, (the default), the user will be able to change the Rdbmshlp_TCTLibDatabaseServerName>Main in the login dialog box. If False, the Rdbms combo box field will be disabled.

RdbmsShow

:Boolean;

If True, (the default), the Rdbmshlp_TCTLibDatabaseServerName>Main will be displayed in the login dialog box. If False, the user will not see or be able to change it.

RowCount

:Integer;

If this option is used, the database server returns only a maximum number of regular rows for a select statement.

This does not apply when a Cursor is used. It also is not used for TCTTable.

Setting it to “0”, sets it back to the default, which is to return all the rows generated by the select statement.
ServerList

:TStrings;

This property contains the list of SQL servers accessible from the application WHILE developing. When the login dialog box is displayed, it will NOT use this list of servers; it will use all the available servers as at that time instead. This is read from the SQL.INI file.
ServerName

:String[30];

The name of the SQL Server to connect to.
ServerPrompt

:Boolean;

If True, (the default), the user will be able to change the ServerNamehlp_TCTLibDatabaseServerName>Main in the login dialog box. If False, the server name field will be disabled.

ServerShow

:Boolean;

If True, (the default), the ServerNamehlp_TCTLibDatabaseServerName>Main will be displayed in the login dialog box. If False, the user will not see or be able to change it.
ShowDbMessages
:TShowDbMessages;

Use this property to specify if the server messages must be displayed or not. A silent exception will still be raised if an error occurs.

smDbMsg

When set, the server messages will be displayed.

smDbErr

When set, the server errors will be displayed.

SortOrder

:String;

The sort order defaults to binary. General-purpose dictionary sort order for use with several Western-European languages including English, French, and German. Uses the ISO 8859-1 character set and is case-sensitive.
TransLevel

:TTransLevel;

This property is used to specify the transaction isolation level.

Setting the value to tlLevel3 causes all pages of tables specified in a select query inside a transaction to be locked for the duration of the transaction.
TextSize

:Integer;

The length, in bytes, of the longest text or image value the server should return.
The default value is 32768.

TimeOut

:Integer;

The Timeout value.
UniqueName

:String;
Contains a unique name generated using the day, hour, minutes, seconds and milliseconds.

UserName

:String[30];

Contains the Username that will be used during the database connection. Storing hard-coded user name and password entries in the UserName and Password hlp_TCTLibDatabasePassword>Mainfields can compromise server security.
Methods

Connect

Opens the database connection using the UserNamehlp_TCTLibDatabaseUserName>Main, Passwordhlp_TCTLibDatabasePassword>Main and ServerNamehlp_TCTLibDatabaseServerName>Main properties. These are the only properties that are mandatory. If the password is null, the Passwordhlp_TCTLibDatabasePassword>Main property must be left blank.
Commit

CloseDataSets

Call CloseDataSets to close all active datasets without disconnecting from the database server. Ordinarily, when an application calls Close, all datasets are closed, and the connection to the database server is dropped. Calling CloseDataSets instead of Close ensures that an application can close all active datasets without having to reconnect to the database server at a later time.

Close
Call Close to disconnect from a database server. Disconnecting frees system resources allocated to the connection.

DisConnect

Close the database connection.
IdentityInsert

Disables or Enables inserts into the table specified by TableName’s identity column.

If Insert is TRUE, identity insert is enabled, else it is disabled.

Rollback

Call Rollback to cancel all updates, insertions, and deletions for the current transaction and to end the transaction. The current transaction is the last transaction started by calling StartTransaction.

Before calling Rollback, an application may check the status of the InTransaction property.

StartTransaction

Call StartTransaction to begin a new transaction against the database server.

Updates, insertions, and deletions that take place after a call to StartTransaction are held by the server until an application calls Commit to save the changes or Rollback is to cancel them.

Events

AfterConnect

Occurs after an application completes connecting to a database and before any data access occurs.
AfterDisConnect

Executes after disconnecting.
BeforeConnect

Executes before connection.
BeforeDisConnect

Executes before disconnecting.
CTLibBulk

A component used for the high-speed transfer of data between a database table and an operating system file. It provides an alternative to the use of SQL insert and select commands to transfer data.

This component can also be used to transfer data between different servers or between different tables on the same server.
Properties

Background

:Boolean;

TRUE if the component must create a new thread and execute using the new thread.
BatchCount

:Integer;

Contains the number of the last batch send to the server. If BatchSize is 0, this value will be 0.
BatchSize

:Integer;

Specifies the number of rows per batch of data that must be copied. Only applies when Direction is bdIn.
Busy

:Boolean;

TRUE if the bulk copy is in progress, else FALSE.
DataFile

:String;

The full path name of an operating system file.
DbName

:String[30];

Specifies the CTLibDatabase component to use for the connection.
DelphiDtFmt

:Boolean;

TRUE if the date value must be converted to a valid Delphi date. The date is in the format MM/DD/YY HH:MM:SS PM (or AM)
Direction

:TBulkDirection;

The direction of the copy. bdIn Indicates a copy from a file into the database table. bdOut Indicates a copy to a file from the database table.
ErrorFile

:String;

The full path name of an error file. Not currently used.
FieldTerminator

:String;

Specifies the default field terminator.
FirstRow

:Integer;

The number of the first row to copy. The default is the first row.
Format

:TFormat;

Specifies the format of the data.

BcNative

Performs the copy operation using native (operating system) formats. Files in native data format are not human-readable. This option is not yet supported.

BcCharacter

Performs the copy operation with char datatype as the default. This option uses TAB (char(9)) as field terminator and CR+LF and row terminator.

BcNone

The row and field terminators must be specified. Currently only supported when direction is bdOut.

GetKeys

:Boolean;

TRUE if the component must detect the columns that define the unique index on the table.

Not currently in use.

LastRow

:Integer;

The number of the last row to copy. The default is the last row.
NumCols

:Integer;

The number of columns in the table.
RowsCopied

:Integer;

The number of rows copied to or from the server.
RowTerminator

:String;

Specifies the default row terminator.
ShowDbMessages
:TShowDbMessages;

Use this property to specify if the server messages must be displayed or not. A silent exception will still be raised if an error occurs.

smDbMsg

When set, the server messages will be displayed.

smDbErr

When set, the server errors will be displayed.

SrcTarDbName

:String[30];

Specifies the second CTLibDatabase component to use for either a target or a source. If may not be the same as DbName. It has to be a different database connection.

If Direction is bdOut, SrcTarDbName specifies the target CTLibDatabase component.

If Direction is bdIn, SrcTarDbName specifies the source CTLibDatabase component.
SrcTarTableName
:String[30];

Specifies the second Table to use for either a target or a source.

If TableName and SrcTarTableName is on the same server, two separate CTLibDatabase connections must be made to the same server.

If Direction is bdOut, SrcTarTableName specifies the target table name.

If Direction is bdIn, SrcTarTableName specifies the source table name.
TableName

:String[30];

Contains the Sybase table name.
Methods

BulkCopy

Copies a database table to or from an operating system file in a user-specified format.
StopCopy

When the copy is done in a separate thread (Background is TRUE), use this method to terminate the thread.

Currently this method sends a blk_done(CS_BLK_BATCH) command to the server. This causes all the rows send to be batched (inserted).
GetColumnsInfo

Use this method to retrieve the column information about the table. This only returns column information, no data.
Events

AfterCopy

Executes the specified procedure just after the bulk copy process completes.
AfterRow

Executes the specified procedure just after a row is copied to the server.
BeforeCopy

Executes the specified procedure just before the bulk copy process completes.
BeforeRow

Executes the specified procedure just before a row is copied to the server.
OnBatch

Executes the specified procedure when a batch is send to the server.
CTLibChkListBox

TCTLibChkListBox implements the generic behavior introduced in TCheckListbox.

A TCTLibChkListBox component only displays data, it provides no method to modify the underlying table structures.
Properties

AutoSize

:Boolean;

When TRUE, the Width will be set to the maximum with of the result set.
CheckFieldName
:String[30];

The database column that will be used to determine if the item must be checked or not.
CheckValue

:String;

The value that will be used to determine if the item must be checked or not.

If the data value of CheckFielNamehlp_TCTLibChkListBoxCheckFieldName>Main is this value, the item is checked.
CurrValue

:String;

Contains the value of the current (fetched) row.

This is the value that will be displayed.

DbError

:String;
Contains the last Sybase error string.

DbMessage

:String;
Contains the last Sybase message string.

DbName

:String[30];

Specifies the CTLibDatabase component to use for the connection.
FieldName

:String[30];

The database column that will be selected for display.
HorizontalScrollbar

:Boolean;

When TRUE, the listbox will have a horizontal scrollbar.

MsgDialogs

:TMsgDialogs;

Use this property to specify if the server messages and errors must be displayed in an enhanced dialog box.

mdEnhMsg

When set, the server messages will be displayed in an enhanced dialog box.

mdEnhErr

When set, the server errors will be displayed in an enhanced dialog box.

RowsReturned

:Boolean;

True if the sql command returned any rows. Read Only.
ShowDbMessages
:TShowDbMessages;

Use this property to specify if the server messages must be displayed or not. A silent exception will still be raised if an error occurs.

smDbMsg

When set, the server messages will be displayed.

smDbErr

When set, the server errors will be displayed.

Sql

:String;

Contains the sql command.

If this property is used, two columns must be selected. The first column will be displayed and the second column will be used to determine if the item must be check. If the value of the second column is CheckValue,hlp_TCTLibChklistBoxCheckValue>Main the item will be checked.
TableName

:String[30];

Contains the database table name.
Value

:String;

Contains the value of the current selected item.

This is the value that will be displayed.
Methods

AddString

Adds a string to the items list. Use this method when the HorizontalScrollbar is TRUE and new items must be added.

ClearSql

Clears the sql property.
SqlExec

Executes the command in the sql property.
LoadSqlFromFile

Loads the sql command from a specified file.
Events

OnItemAdd

Executes after an item is added.
CTLibComboBox

A TCTLibComboBox component is an data-aware edit box with a scrollable drop-down list attached to it. Users can select an item from the list or type directly into the edit box. The result set column, set by FieldName, will be displayed.

A TCTLibComboBox component only displays data, it provides no method to modify the underlying data structures.
Properties

AutoSize

:Boolean;

When TRUE, the Width will be set to the maximum with of the result set.
CurrValue

:String;

Contains the value of the current (fetched) row.

DbError

:String;
Contains the last Sybase error string.

DbMessage

:String;
Contains the last Sybase message string.

DbName

:String[30];

Specifies the CTLibDatabase component to use for the connection.

FieldName

:String[30];

The database column that will be selected for display.
MsgDialogs

:TMsgDialogs;

Use this property to specify if the server messages and errors must be displayed in an enhanced dialog box.

mdEnhMsg

When set, the server messages will be displayed in an enhanced dialog box.

mdEnhErr

When set, the server errors will be displayed in an enhanced dialog box.

RowsReturned

:Boolean;

True if the sql command returned any rows. Read Only.
ShowDbMessages
:TShowDbMessages;

Use this property to specify if the server messages must be displayed or not. A silent exception will still be raised if an error occurs.

smDbMsg

When set, the server messages will be displayed.

smDbErr

When set, the server errors will be displayed.

Sql

:String;

Contains the sql command.
TableName

:String[30];

Contains the database table name.
Value

:String;

Contains the value of the current selected item.
Methods

ClearSql

Clears the sql property.
SqlExec

Executes the command in the sql property.
LoadSqlFromFile

Loads the sql command from a specified file.
Events

OnItemAdd

Executes after an item is added.
CTLibGrid

Add a TCTLibGrid object to a form to present textual data in a tabular format. TCTLibGrid provides many properties to control the appearance of the grid, as well as events and methods that take advantage of the tabular organization of the grid in responding to user actions.

A TCTLibGrid component only displays data, it provides no method to modify the underlying data structures.
Properties

Background

:Boolean;

When TRUE, the sql commands will be executed in a thread.
CurrCmd

:Integer;

Returns the number of the current command.
CurrSql

:String;

Returns the current sql command.
Commands are separated with a go statement.
DbError

:String;
Contains the last Sybase error string.

DbMessage

:String;
Contains the last Sybase message string.

DbName

:String[30];

Specifies the CTLibDatabase component to use for the connection.
KeepHeaders

:Boolean;

Set to TRUE to display the column headers in the last of the FixedRows.
MsgDialogs

:TMsgDialogs;

Use this property to specify if the server messages and errors must be displayed in an enhanced dialog box.

mdEnhMsg

When set, the server messages will be displayed in an enhanced dialog box.

mdEnhErr

When set, the server errors will be displayed in an enhanced dialog box.

RowsReturned

:Boolean;

TRUE if the sql command(s) returned any rows. Read Only.

ShowDbMessages
:TShowDbMessages;

Use this property to specify if the server messages must be displayed or not. A silent exception will still be raised if an error occurs.

smDbMsg

When set, the server messages will be displayed.

smDbErr

When set, the server errors will be displayed.

ShowLineNum

:Boolean;

When TRUE, the grid will display an incremental line number.
ShowHeader

:Boolean;

When TRUE, the column headers will be displayed.
ShowRowCount

:Boolean;

When TRUE, the number of rows affected by the sql command(s) will be displayed.
Sql

:String;

Contains the sql command(s).
Terminated

:Boolean;

TRUE if the CTLibGrid thread has been terminated. Read Only.
Thread

:TThread;

This is the thread used when the sql is executed in background. All the standard TThread methods can be used on this property.
Methods

AddSql

Add sql string to sql property.
ClearSql

Clears the sql property.
Export

Exports the contents of the grid to a specified file.

SqlExec

Executes the command in the sql property.
Events

AfterExec

Executes after execution of a query.
BeforeExec

Executes just before execution of the sql commands.
BeforeCommand

Executes before each sql command in the Sql property gets executed on the server.
CTLibListBox

TCTLibListBox implements the generic behavior introduced in TCustomListbox.

A TCTLibListBox component only displays data, it provides no method to modify the underlying table structures.
Properties

AutoSize

:Boolean;

When TRUE, the Width will be set to the maximum with of the result set.
CurrValue

:String;

Contains the value of the current (fetched) row.

DbError

:String;
Contains the last Sybase error string.

DbMessage

:String;
Contains the last Sybase message string.

DbName

:String[30];

Specifies the CTLibDatabase component to use for the connection.
FieldName

:String[30];

The database column that will be selected for display.

HorizontalScrollbar

:Boolean;

When TRUE, the listbox will have a horizontal scrollbar.
MsgDialogs

:TMsgDialogs;

Use this property to specify if the server messages and errors must be displayed in an enhanced dialog box.

mdEnhMsg

When set, the server messages will be displayed in an enhanced dialog box.

mdEnhErr

When set, the server errors will be displayed in an enhanced dialog box.

RowsReturned

:Boolean;

True if the sql command returned any rows. Read Only.
ShowDbMessages
:TShowDbMessages;

Use this property to specify if the server messages must be displayed or not. A silent exception will still be raised if an error occurs.

smDbMsg

When set, the server messages will be displayed.

smDbErr

When set, the server errors will be displayed.

ShowHeader

:Boolean;

When TRUE, the column headers will be displayed.
Sql

:String;

Contains the sql command.
TableName

:String[30];

Contains the database table name.
Value

:String;

Contains the value of the current selected item.
Methods

AddString

Adds a string to the items list. Use this method when the HorizontalScrollbar is TRUE and new items must be added.

ClearSql

Clears the sql property.
SqlExec

Executes the command(s) in the sql property.
LoadSqlFromFile

Loads the sql command from a specified file.
Events

OnItemAdd

Executes after an item is added.
CTLibObjInfo

TCTLibObjInfo supplies information about the various objects in a database.

Properties

DbError

:String;
Contains the last Sybase error string.

DbMessage

:String;
Contains the last Sybase message string.

DbName

:String[30];

Specifies the CTLibDatabase component to use for the connection.

MsgDialogs

:TMsgDialogs;

Use this property to specify if the server messages and errors must be displayed in an enhanced dialog box.

mdEnhMsg

When set, the server messages will be displayed in an enhanced dialog box.

mdEnhErr

When set, the server errors will be displayed in an enhanced dialog box.

ShowDbMessages
:TShowDbMessages;

Use this property to specify if the server messages must be displayed or not. A silent exception will still be raised if an error occurs.

smDbMsg

When set, the server messages will be displayed.

smDbErr

When set, the server errors will be displayed.

Methods

GetCreateTableText

Returns the CREATE TABLE text of the specified table.

GetObjectText

Returns the text of the specified Stored Procedure, View or Trigger.
GetObjectNames

Returns a list of object names that are of the specified object type.

The types are:

P
Stored Procedures

TR
Triggers

V
Views

U
User Tables

S
System Tables

R

Rules
GetSelectText

Returns a SELECT query of the specified table.

GetServerNames

Returns a list of servers specified in the SQL.INI file.
GetDatabaseNames

Returns a list of all the databases in the master..sysdatabases table.

GetUserNames

Returns a list of all the users in the sysusers table.
GetGroupNames

Returns a list of all the groups in the sysusers table.
GetSystemDataTypes

Returns a list of all the system data types in the systypes table.
GetUserDataTypes

Returns a list of all the user data types in the systypes table.
GetIndexNames

Returns a list of all the indexes in the sysindexes table.
GetTableIndexNames

Returns a list of all the indexes in the sysindexes table for the specified table.
GetSegmentNames

Returns a list of all the segments in the syssegments table.
Events

No events.

CTLibFunctions

This component contains a list of functions to call server specific functions.

Properties

DbError

:String;
Contains the last Sybase error string.

DbMessage

:String;
Contains the last Sybase message string.

DbName

:String[30];

Specifies the CTLibDatabase component to use for the connection.

MsgDialogs

:TMsgDialogs;

Use this property to specify if the server messages and errors must be displayed in an enhanced dialog box.

mdEnhMsg

When set, the server messages will be displayed in an enhanced dialog box.

mdEnhErr

When set, the server errors will be displayed in an enhanced dialog box.

ShowDbMessages
:TShowDbMessages;

Use this property to specify if the server messages must be displayed or not. A silent exception will still be raised if an error occurs.

smDbMsg

When set, the server messages will be displayed.

smDbErr

When set, the server errors will be displayed.

Sql

:String;

A read-only property that contains the sql statement executed for the last method called.

Methods

Col_Length

Returns the length of the column specified by Column_Name and Object_Name. The return value is the length specified by the datatype, NOT the length of the data.

Col_Name

Returns the name of the column specified by Column_Id and Object_Id.
DateAdd

Returns a date produced by adding date parts to abother date.

DateDiff

Returns the amount of time between the second and first of two dates, converted to the specified date part, for example, months, days, hours.

DateName

Returns part of a datetime or smalldatetime value as an ASCII string.
DatePart

Returns part of a datetime or smalldatetime value for example, the month, as an integer.

Db_Id

Returns the current database id, or the id of the database specified.
Db_Name

Returns the current database name, or the name of the database specified by the id.
HexToInt

Returns an integer value, with the string value of Hexadecimal_String converted to Integer.
Host_Id

Returns the id of the host.
Host_Name

Returns the name of the host.
IntToHex

Returns a string value, with the integer value of Integer_Expression converted to Hex.
Object_Id

Returns the sysobjects id of the object specified by Object_Name.
Object_Name

Returns the sysobjects name of the object specified by Object_Id.
Replicate

Returns a string with the same datatype as Char_Expr, containing the same expression repeated the specified number of times or as many times as will fit into a 255 byte space, whichever is less.
Right

Returns the part of the character expression starting the specified number of characters from the right.
Show_Role

Show the roles assigned to the current user.
Stuff

Delete Lngth characters from Char_Expr1 at Start, then insert Char_Expr2 into Char_Expr1 at Start.
SUser_Id

Returns the id of the current server user, or the user specified by Server_User_Name.
SUser_Name

Returns the name of the current server user, or the user specified by Server_User_Id.
User_Id

Returns the id of the current user, or the user specified by User_Name.
User_Name

Returns the name of the current user, or the user specified by User_Id.
Events

AfterDbError

This method is called after an error is returned from the server.

AfterDbMessage

This method is called after a message is returned from the server.

OnDbError

This method is called when an error is returned from the server.
OnDbMessager

This method is called when a message is returned from the server.

CTLibTools

Contains a list of database functions, dropping various database objects, truncating and deleting tables.

Properties

DbError

:String;
Contains the last Sybase error string.

DbMessage

:String;
Contains the last Sybase message string.

DbName

:String[30];

Specifies the CTLibDatabase component to use for the connection.

MsgDialogs

:TMsgDialogs;

Use this property to specify if the server messages and errors must be displayed in an enhanced dialog box.

mdEnhMsg

When set, the server messages will be displayed in an enhanced dialog box.

mdEnhErr

When set, the server errors will be displayed in an enhanced dialog box.

ShowDbMessages
:TShowDbMessages;

Use this property to specify if the server messages must be displayed or not. A silent exception will still be raised if an error occurs.

smDbMsg

When set, the server messages will be displayed.

smDbErr

When set, the server errors will be displayed.

Methods

DropObject

Drops the specified database object.

TruncateTable

Truncates the specified table.
ClearTable

Deletes all the rows from the specified table.

Events

AfterDbError

This method is called after an error is returned from the server.

AfterDbMessage

This method is called after a message is returned from the server.

OnDbError

This method is called when an error is returned from the server.
OnDbMessager

This method is called when a message is returned from the server.
CTLibQuery

TCTLibQuery encapsulates a dataset with a result set that is based on an SQL statement. Use TCTLibQuery to access a database using SQL statements.
Properties

Active

:Boolean;

Use Active to determine or set a dataset’s connection to data in a database. When Active is False, the dataset is closed; the dataset cannot read data from or write data to the database. When Active is True, data can be read from and written to the database.
BufferSize

:Integer;

This property is currently not used. It might be removed in the future. It might be replaced by Cursors.
ColLen

:Integer;

Returns the specified column’s data length.
ColPrecision

:Integer;

Returns the specified column’s precision.
ColScale

:Integer;

Returns the specified column’s scale.
ColType

:String;

Returns the specified column’s data type.
Column

:String;

Returns the value of the specified column.
CurrCmd

:Integer;

Returns the number of the current command.
DbError

:String;
Contains the last Sybase error string.

DbMessage

:String;
Contains the last Sybase message string.

DbName

:String[30];

Specifies the CTLibDatabase component to use for the connection.
Heading

:String;

Returns the specified column heading.
HeadingLen

:Integer;

Returns the length of the specified column heading.
MsgDialogs

:TMsgDialogs;

Use this property to specify if the server messages and errors must be displayed in an enhanced dialog box.

mdEnhMsg

When set, the server messages will be displayed in an enhanced dialog box.

mdEnhErr

When set, the server errors will be displayed in an enhanced dialog box.

IsChar

:Boolean;

Returns True or False. If the column is a character/string column, True will be returned else False.

MaxLen

:Integer;

Maximum length of the specified data column. If the header is longer than the maximum data length, the return value will be the length of the header.
NumCols

:Integer;

The number of columns returned by the last command.
RowsAffected

:Integer;

Returns the number of rows affected by the last command.
RowsReturned

:Boolean;

True if the sql command(s) returned any rows. Read Only.
ShowDbMessages
:TShowDbMessages;

Use this property to specify if the server messages must be displayed or not. A silent exception will still be raised if an error occurs.

smDbMsg

When set, the server messages will be displayed.

smDbErr

When set, the server errors will be displayed.

Sql

:String;

Contains the sql command(s).
Stream

:TMemoryStream;

When TextImage is TRUE, the text and image data will also be available in this property.
Example:

TCTLibQuery1.Sql:='select imagefield from pubs2..pics where id=1';

TCTLibQuery1.SqlExec;

while TCTLibQuery1.Nextrow=1 do;

TCTLibQuery1.Stream[1].position:=0;

Image1.Picture.Bitmap.LoadFromStream(TCTLibQuery1.Stream[1]);

This property can be used for Text and Char columns as well.

Keep in mind that the TextSize property of the CTLibDatabase component must be set to the correct value.

TextImage

:Boolean;

If TRUE, the query uses the CT-Lib function ct_get_data to read chunks of data from the server.

An application typically uses this option to retrieve large text or image values, although it can be used on columns of any data type.
Methods

AddSql

Adds sql string to sql property.
ClearSql

Clears the sql property.
LoadSqlFromFile

Loads the sql command from a specified file.

SqlExec

Executes the command(s) in the sql property.
Row_Exists

Return True if another row exists, else False.
Events

AfterExec

Executes after execution of a query.
BeforeExec

Executes just before execution of the sql commands.
BeforeCommand

Executes before each sql command in the Sql property gets executed on the server.
CTQuery

TCTQuery is a TDataset descendant component that encapsulates a dataset with a result set that is based on an SQL statement.

Use TCTQuery to access data in multiple database tables using the Sybase Open-Client Library functions. The component can also work with a subset of records within a database query using ranges and filters.

The properties described in this help file, are only the CTQuery specific properties. All the TDataset properties are still available.

The following Sybase data types are currently supported:

CHAR

VARCHAR

INT

SMALLINT

TINYINT

REAL

FLOAT

BIT (Translates to a Delphi Boolean)

DATETIME

SMALLDATETIME

MONEY

SMALLMONEY

NUMERIC

DECIMAL

Properties

DbError

:String;
Contains the last Sybase error string.

DbMessage

:String;
Contains the last Sybase message string.

DbName

:String[30];

Specifies the CTLibDatabase component to use for the connection.
FetchRows

:Integer;

The number of rows that the Open-Client cursor will read in with one read operation.

A good estimate is about 25% of the maximum number of rows that will be read.
Monitor

:Boolean;

If set to TRUE, a message is send to the CTSqlMon utility. This is an application to monitor the SQL and CT-Lib function calls from CTTable.and CTQuery.
MsgDialogs

:TMsgDialogs;

Use this property to specify if the server messages and errors must be displayed in an enhanced dialog box.

mdEnhMsg

When set, the server messages will be displayed in an enhanced dialog box.

mdEnhErr

When set, the server errors will be displayed in an enhanced dialog box.

RowsAffected

:Integer;

Returns the number of rows operated upon by the latest query execution.
Check RowsAffected to determine how many rows were updated or deleted by the last query operation.

ShowDbMessages
:TShowDbMessages;

Use this property to specify if the server messages must be displayed or not. A silent exception will still be raised if an error occurs.

smDbMsg

When set, the server messages will be displayed.

smDbErr

When set, the server errors will be displayed.

Sql

:TStrings;

Contains the text of the SQL statement to execute for the query.
Use SQL to provide the SQL statement that a query component executes when its Open method is called. At design time the SQL property can be edited by invoking the String List editor in the Object Inspector.

The SQL property may contain only one complete SQL statement at a time. Multiple “batch” statements are not allowed.

Text

:PChar;

Points to the actual text of the SQL query passed to the database server.
TypeErrCont

:Boolean;

Determines if the execution must continue when a data type is not supported.

If TRUE, the execution will continue when an unsupported data type is found. In this case, the column with the unsupported data type will be removed from the column list. A message box will be displayed.

If FALSE, an exception will be raised and execution will not continue.
TypeErrShow

:Boolean;

Determines if a message box will be displayed when a column has an unsupported data type.

If TRUE, a message box will be displayed when an unsupported data type is found.
Methods

ExecSql

Executes the SQL statement for the query.

Call ExecSQL to execute the SQL statement currently assigned to the SQL property. Use ExecSQL to execute queries that do not return a cursor to data (such as INSERT, UPDATE, DELETE, and CREATE TABLE).

For SELECT statements, call Open instead of ExecSQL.
FetchAll

Reads all the remaining rows until EOF.

The cursor position stays unchanged.
Events

No new events.

CTStoredProc

TCTStoredProc encapsulates a stored procedure on a database server.

Currently, only ONE CTStoredProc per connection is allowed. No other TDataset component is allowed to use the same CTDatabase connection. If it is needed, call the FetchAll method of the CTStoredProc component BEFORE the second dataset is opened.

Use a TCTStoredProc object when a client application must use a stored procedure on a database server. A stored procedure is a grouped set of statements, stored as part of a database server’s metadata (just like tables, indexes, and domains), that performs a frequently-repeated, database-related task on the server and passes results to the client.

Many stored procedures require a series of input arguments, or parameters, that are used during processing. TCTStoredProc provides a Params property that enables an application to set these parameters before executing the stored procedure.

TCTStoredProc reuses the Params property to hold the results returned by a stored procedure. Params is an array of values. Depending on server implementation, a stored procedure can return either a single set of values, or a result set similar to the result set returned by a query.

The properties described in this help file, are only the CTStoredProc specific properties. All the TDataset properties are still available.

The Prepare and UnPrepare methods were removed, for reason being that when Dynamic Sql is used (Preparing a query), Sybase compiles the query and creates a “stored procedure” and calling a stored procedure, it is not needed to create another query plan for an already created plan.

The following Sybase data types are currently supported:

CHAR

VARCHAR

INT

SMALLINT

TINYINT

REAL

FLOAT

BIT (Translates to a Delphi Boolean)

DATETIME

SMALLDATETIME

MONEY

SMALLMONEY

NUMERIC

DECIMAL

Properties

DbError

:String;
Contains the last Sybase error string.

DbMessage

:String;
Contains the last Sybase message string.

DbName

:String[30];

Specifies the CTLibDatabase component to use for the connection.
Monitor

:Boolean;

If set to TRUE, a message is send to the CTSqlMon utility. This is an application to monitor the SQL and CT-Lib function calls from CTTable, CTQuery.and CTStoredProc.
MsgDialogs

:TMsgDialogs;

Use this property to specify if the server messages and errors must be displayed in an enhanced dialog box.

mdEnhMsg

When set, the server messages will be displayed in an enhanced dialog box.

mdEnhErr

When set, the server errors will be displayed in an enhanced dialog box.

ShowDbMessages
:TShowDbMessages;

Use this property to specify if the server messages must be displayed or not. A silent exception will still be raised if an error occurs.

smDbMsg

When set, the server messages will be displayed.

smDbErr

When set, the server errors will be displayed.

StoredProcName

:String[30];

Identifies the name of the stored procedure on the server for which this object is an encapsulation.

Set StoredProcName to specify the name of the stored procedure to call on the server. If StoredProcName does not match the name of an existing stored procedure on the server, then when the application attempts to prepare the procedure prior to execution, an exception is raised.
Text

:PChar;

Points to the actual text of the SQL query passed to the database server.
TypeErrCont

:Boolean;

Determines if the execution must continue when a data type is not supported.

If TRUE, the execution will continue when an unsupported data type is found. In this case, the column with the unsupported data type will be removed from the column list. A message box will be displayed.

If FALSE, an exception will be raised and execution will not continue.
TypeErrShow

:Boolean;

Determines if a message box will be displayed when a column has an unsupported data type.

If TRUE, a message box will be displayed when an unsupported data type is found.
Methods

FetchAll

Reads all the remaining rows until EOF.
Events

No new events.

CTTable

CTTable is a dataset component that encapsulates a database table.

Use CTTable to access data in a single database table using the Sybase Open-Client Library functions. The component can also work with a subset of records within a database table using ranges and filters.

The properties described in this help file, are only the CTTable specific properties. All the TDataset properties are still available.

The following Sybase data types are currently supported:

CHAR

VARCHAR

INT

SMALLINT

TINYINT

REAL

FLOAT

BIT (Translates to a Delphi Boolean)

DATETIME

SMALLDATETIME

MONEY

SMALLMONEY

NUMERIC

DECIMAL
Properties

CheckDups

:Boolean;

When TRUE, a select will be done against the database to see if more than one row will be affected when a row is deleted or modified.
DbError

:String;
Contains the last Sybase error string.

DbMessage

:String;
Contains the last Sybase message string.

DbName

:String[30];

Specifies the CTLibDatabase component to use for the connection.
DefaultIndex

:Boolean;

Specifies if the data in the table should be ordered on a default index when opened

When this property is set to False, the component will not use an ORDER BY clause when opening a table on a SQL server. When DefaultIndex is True, the component will attempt to order the data based on the primary key or a unique index when opening the table. DefaultIndex defaults to True.

FetchRows

:Integer;

The number of rows that the Open-Client cursor will read in with one read operation.

A good estimate is about 25% of the maximum number of rows that will be read.
IndexName

:String[30];

Identifies a index for the table.
Use IndexName to specify an index for a table. Otherwise, if IndexName is empty, a table’s sort order is based on its primary index.

Monitor

:Boolean;

If set to TRUE, a message is send to the CTSqlMon utility. This is an application to monitor the SQL and CT-Lib function calls from CTTable.and CTQuery.
MsgDialogs

:TMsgDialogs;

Use this property to specify if the server messages and errors must be displayed in an enhanced dialog box.

mdEnhMsg

When set, the server messages will be displayed in an enhanced dialog box.

mdEnhErr

When set, the server errors will be displayed in an enhanced dialog box.

ShowDbMessages
:TShowDbMessages;

Use this property to specify if the server messages must be displayed or not. A silent exception will still be raised if an error occurs.

smDbMsg

When set, the server messages will be displayed.

smDbErr

When set, the server errors will be displayed.

TableName

:String[30];

Contains the database table name.
TypeErrCont

:Boolean;

Determines if the execution must continue when a data type is not supported.

If TRUE, the execution will continue when an unsupported data type is found. In this case, the column with the unsupported data type will be removed from the column list. A message box will be displayed.

If FALSE, an exception will be raised and execution will not continue.

TypeErrShow

:Boolean;

Determines if a message box will be displayed when a column has an unsupported data type.
If TRUE, a message box will be displayed when an unsupported data type is found.
Methods

FetchAll

Reads all the remaining rows until EOF. The cursor position stays the same.
Events

No new events.

CTDataSet

CTDataset is the base class of CTTable, CTQuery and CTStoredProc. I am not going to discuss the properties, methods and events. It implements a few new properties, methods and events, but they are described in the various descendants. The reference manuals I have used, describe the properties and methods in detail.

CTSqlMon

A replication of Delphi’s SQL Monitor.

If you have any questions or suggestions, please e-mail me.

When the monitor is used, the performance of the application that sends data to the monitor will be poor, so it must only be used for debugging and to see all the CT-Lib calls.

