SmoothLine ver 2.0 Documentation, June 21, 1998





Smoothline antialiased drawing component for Delphi 3.



1.0 Introduction



All computers that generate displayed images use a rectangular coordinate system of picture elements (pixels) to store and process image data.  This works well both in terms of handling image data in memories, and for displaying the imagery on the available computer display technologies (mostly raster scanned Cathode Ray Tubes and Liquid Crystal Displays).  This system of storing and displaying image information does have an obvious drawback in that with a fixed rectangular pattern of pixels and a limited resolution, an effect called quantization error or aliasing occurs.  This effect is noticeable in the stairstep pattern that appears on lines drawn at any angle other than completely horizontal or vertical.  Certain types of CRTs exist which are know as calligraphic or vector graphic CRTs.  Unlike raster scanned CRTs which scan images onto the screen one row at a time, they stroke write the lines by sweeping the electron beam across the screen like a pen, thus drawing lines at the proper angle.  Because the electron beam has a gradual change in intensity from its center to its edge (Gaussian), there is no noticeable aliasing of the line, even though the resolution of the phosphor dots is limited.



While it is not possible to make a raster scanned computer monitor or an active matrix LCD stroke write lines onto their screens, it is possible to imitate the appearance of a stroke written line.  This is done by varying the brightness of pixels neighboring the desired mathematical line, and this technique is known as antialiasing.  There are many possible algorithms for accomplishing this, and some are faster than others.  I have developed an algorithm which renders an antialiased line in as little time as possible while still providing a high degree of image quality.  The demonstration application included with this component gives an example of what SmoothLines look like, and how neat they can make your application look.  You will have to experiment to discover all of the possible uses and effects that you can achieve with them, but believe me, there are lots of possibilities.  I look forward to hearing about how other software developers use this component in their applications.



SmoothLine works for color modes greater than 256 colors, with Tru-Color providing the best image quality.  This is because the number of gray levels is higher with more colors, and thus the line will appear smoother.  SmoothLines drawn with 16 or 256 color modes may not have desireable appearances, so you may wish to detect these modes and use normal lines instead if the application is on a low color mode system.



The  philosophy of Razor's Edge Software is that software products should be reasonably priced.  This means that they are affordable for the widest possible customer base,  and provide reasonable value for the price paid.   Customers are more apt to pay for software rather than attempt to use a pirated copy if the price is right  At $5 a copy, I believe that this component is worthy or a purchase by anyone who finds it to be useful.



Despite my faith in my fellow software developer,  I have taken a basic step to encourage users of the SmoothLn component to pay for their copy.  Nuisance messages will appear anytime an instance of SmoothLn is placed on a form, and every time that an application containing SmoothLn is started.



By paying the registration fee, a registered and personalized copy of MathX will be provided, along with support with regard to bug fixes, answering questions on its use, and updates and upgrades.



2.0  Registration



SmoothLn may be registered for $5.  SmoothLn will be distributed to you by Email unless you request that a disk based copy be sent.  A disk based copy will be mailed for an additional $5 charge to cover materials, postage, and handling.  Each registered customer will receive a personalized copy of SmoothLn with your name entered in the Customer property field.  Orders will be processed as rapidly as possible.  Allow 1 to 3 weeks after mailing your payment for delivery.



Advantages of registration:



1.  Elimination of nuisance messages.

2.  Support for bug fixes, updates, and question answering.

3.  Your copy will be personalized with your name or company's name.

4.  Razor's Edge Software will be encouraged to produce more low cost software products.

5.  You will sleep better knowing you did the right thing (OK, maybe I'm stretching things here but you get the point).



Register by sending your name, address, and Email address along with a check or money order for $5 ($10 for a disk based copy) to:



Razor's Edge Software

P.O. Box 170055

Boise, Idaho  83717-0055

Email:  razor@micron.net

http://www.webpak.net/~razor



3.0  Functionality



SmoothLn is derived from the TPaintBox component, so it comes complete with a visible Canvas, and all the other normal functions that go with the PaintBox.  In addition, 10 pages of off-screen bitmaps have been added to allow imagery to be created out of the view of the user, and then brought out to the visible Canvas on demand.  Having these additional bitmaps provides the ability to load and save images from disk (methods of TBitMap), to draw images without the user having to watch them change, and to create sprites and animations by copying chunks of image data from the off-screen bitmaps to the visible canvas.  These added bitmaps are named Page1 through Page10.  I suspect you will find them very useful.



The visible canvas is a dynamic drawing surface, so it is necessary to redraw all of the graphics on it every time the OnPaint event is called.  The off-screen bitmaps are static drawing surfaces, so once objects are drawn on them, they remain there until overwritten, or cleared by the Erase( ) method.



A new pen has been added to the PaintBox, and it is called SmoothPen.  It is visible in the property page of the component and may be changed at both design time and at run time.  The visible canvas and each of the off-screen bitmaps have their own normal pen, and the normal pens operate independently of the SmoothPen, and of each other (i.e. the visible canvas pen properties are different than the SmoothPen, and of Page1, Page2, etc.).  The SmoothPen properties determine how antialised items are drawn on all of the pages and the visible canvas, so it is a global pen within the SmoothLn component.  



The SmoothPen supports the following pen styles:  psSolid, psDash, psDot, psDashDot, psDashDotDot.  Pen styles psClear and psInsideFrame are not supported, and nothing will be drawn if you attempt to use them.



The SmoothPen supports the following pen modes:  pmCopy, pmNotCopy, pmBlack, pmWhite, pmMerge, pmMergeNotPen, and pmNop.  Pen modes pmNot, pmMergePenNot, pmMaskPenNot, pmMaskNotPen, pmNotMerge, pmMask, pmXor, and pmNotXor are not supported, and thus work like pmNop.   



With the SmoothPen, you can use the following antialiasing draw methods: Spot( ), SmoothLineTo( ), SmoothRectangle( ), SmoothPolyLine( ), and SmoothPolygon( ).  Each of these functions is described in detail below.  Also, the method Erase( ) is provided to allow the bitmaps Page1 through Page10 to be cleared to a selected color field.



Spot(X,Y,Page : Integer);

The Spot( ) method draws an antialiased spot at coordinates X,Y on the specified Page.  If Page is 0, the spot is drawn on the visible canvas, if Page is in the range 1 to 10, it is drawn on the specified off-screen bitmap.  Spot is drawn with the color specified in SmoothPen.Color, its size is determined by SmoothPen.Width, and SmoothPen.Mode determines how it is drawn.  SmoothPen.Style has no effect on how spots are drawn.

Example:  SmoothLn1.Spot(100,100,0);



SmoothLineTo(X,Y,Page : integer);

The SmoothLineTo( ) method draws an antialiased line from the current PenPos to coordinates X,Y on the specified Page.  The SmoothPen.Color, SmoothPen.Width, SmoothPen.Mode, and SmoothPen.Style properties all determine how the line will be drawn.  Endpoint antialiasing is performed automatically by SmoothLine by drawing a Spot at the starting point of the line, this helps to smoothly connected a string of lines together for better image quality.

Example:  SmoothLn1.SmoothLineTo(100,100,0);



SmoothBorderLineTo(X,Y,Page : integer);

The SmoothBorderLineTo( ) method draws an antialiased line with a black border from the current PenPos to coordinates X,Y on the specified Page.  The SmoothPen.Color, SmoothPen.Width, SmoothPen.Mode, and SmoothPen.Style properties all determine how the line will be drawn, but the black portion of the line will cut through all existing graphics, so a border line will not merge with existing graphics even if pmMerge is selected.  Endpoint antialiasing is performed automatically by SmoothLine by drawing a Spot at the starting point of the line, this helps to smoothly connected a string of lines together for better image quality.

Example:  SmoothLn1.SmoothBorderLineTo(100,100,0);



SmoothRectangle(X1, Y1, X2, Y2, Page: Integer);

The SmoothRectangle( ) methode draws a rectangle using antialiased lines at the specified location using the SmoothPen.  The PenPos of the specified page is unchanged by this method.  While it isn't really necessary to antialias a rectangle, this method is provided for compatibility with other objects drawn with the SmoothPen.

Example:  SmoothLn1.SmoothRectangle(10,20,100,50,0);



SmoothPolyline(Points: array of TPoint ; Page : Integer);

The SmoothPolyline( ) method draws a sequence of SmoothLines starting at the first point in the Points array and ending at the last point in the Points array.  The PenPos of the specified page is unchanged.

Example:  SmoothLn1.SmoothPolyLine([point(10,10),point(100,100),point(200,10)],0);



SmoothBorderPolyline(Points: array of TPoint ; Page : Integer);

The SmoothBorderPolyline( ) method draws a sequence of black outlined SmoothLines starting at the first point in the Points array and ending at the last point in the Points array.  The PenPos of the specified page is unchanged.

Example:  SmoothLn1.SmoothBorderPolyLine([point(10,10),point(100,100),point(200,10)],0);



SmoothPolygon(X,Y,Radius,Sides,Rotation,Page : Integer);

The SmoothPolygon( ) method draws a SmoothLine polygon centered at X,Y with the specified Radius, number of Sides, and angular Rotation on the specified page using the SmoothPen.  The PenPos of the specified page is unchanged.  The Radius is in pixels, the number of sides are from 3 to 60, and the rotation angle is in degrees. 

Example:  SmoothLn1.SmoothPolygon(100,100,20,6,30,0);



SmoothBorderPolygon(X,Y,Radius,Sides,Rotation,Page : Integer);

The SmoothBorderPolygon( ) method draws a black outlined SmoothLine polygon centered at X,Y with the specified Radius, number of Sides, and angular Rotation on the specified page using the SmoothPen.  The PenPos of the specified page is unchanged.  The Radius is in pixels, the number of sides are from 3 to 60, and the rotation angle is in degrees. 

Example:  SmoothLn1.SmoothBorderPolygon(100,100,20,6,30,0);



SmoothFilledPolygon(X,Y,Radius,Sides,Rotation,Page : Integer);

The SmoothFilledPolygon( ) method draws a filled SmoothLine polygon centered at X,Y with the specified Radius, number of Sides, and angular Rotation on the specified page using the SmoothPen.  The fill color is determined by the current Brush color of the selected page.  The PenPos of the specified page is unchanged.  The Radius is in pixels, the number of sides are from 3 to 60, and the rotation angle is in degrees. 

Example:  SmoothLn1.SmoothFilledPolygon(100,100,20,6,30,0);



Polygon(X,Y,Radius,Sides,Rotation,Page : Integer);

The Polygon( ) method draws a normal line polygon centered at X,Y with the specified Radius, number of Sides, and angular Rotation on the specified page using the pen for that page.  The PenPos of the specified page is unchanged.  The Radius is in pixels, the number of sides are from 3 to 60, and the rotation angle is in degrees. 

Example:  SmoothLn1.Polygon(100,100,20,6,30,0);



FilledPolygon(X,Y,Radius,Sides,Rotation,Page : Integer);

The FilledPolygon( ) method draws a normal line polygon centered at X,Y with the specified Radius, number of Sides, and angular Rotation on the specified page using the pen for that page.  The fill color is determined by the current Brush color of the selected page. The PenPos of the specified page is unchanged.  The Radius is in pixels, the number of sides are from 3 to 60, and the rotation angle is in degrees. 

Example:  SmoothLn1.FilledPolygon(100,100,20,6,30,0);



Erase(Page : Integer ; Color : TColor);

The Erase( ) method clears the specified page and sets all pixels to the specified Color.  The visible canvas (page 0) can only be erased by calling this method from the OnPaint event for the SmoothLn component.  Pages 1 through 10 can be erased at any time, and must be erased if existing graphics need to be removed to make room for new graphics.

Example:  SmoothLn1.Erase(1,clBlack);



When the component is first placed on the form all of the bitmap pages (Page1 to Page10) have their height and width set to zero.  You must set their height and width properties prior to using them if you want them to work.  This should be followed by an Erase( ) to ensure that their backrounds are set to the desired color.  Images drawn on these Pages can be copied to the visible canvas using the Canvas.Draw method or the Canvas.CopyRect method.



For an example of how the SmoothLn component works, execute the Smooth.exe application that is included in the .zip file and look at the source code for this application which is also included.  This should help give you some ideas on how this component can be used.



4.0 Installation



To install SmoothLn, place SmoothLn.dcu and SmoothLn.dcr together in the same directory.  This could be the Delphi Lib directory, or any other directory you choose.



Next, select Component/Install Component... on the Delphi 3 menu bar.



Use the browse button to locate SmoothLn.dcu.  Make sure that the file type is set to .dcu when browsing.



Choose the package you wish to compile it into.  dclustr30.dpk is the default user component package, but you may create a new one if you wish.



Click OK.



When prompted to recompile the package, click yes.



When the package editor comes up, you will see SmoothLn listed.  Close the package editor and click Yes when prompted to save changes to the package.



SmoothLn is automatically placed in the Additional component tab, but you may move it to another tab if you prefer.



Place the control on a form and start using it in your code!  Since SmoothLn is  a native Delphi Component, it will compile into your application and does not require any seperate distribution files.



5.0  Company Information



Razor's Edge Software is a sole proprietorship founded by Dean Andrew Wilkinson.  Razor's Edge Software provides low cost software distributed under the shareware concept

