TRuler/TTabRuler – The ruler components for Delphi

Version 2.00 – 1. February 1998

TRuler gives you a freely double-scalable (page and scale metrics) horizontal/vertical ruler with definable margin and spare areas (to mark space outside the paper) and the showing of two separate cursor positions. In spite of these big functionality it is still easy to use if you just need a simple ruler for your forms. The default layout is largely similar to the MS Word ruler bars to get a common application interface for the end-user.

The TRuler descendant TTabRuler offers additionally complete programmable and user-interactive tabulator support.

New: TTabRuler component with programmable and user-interactive tabulator support.

Legal stuff

The component TRuler may be freely used for non-commercial applications, but the copyright of the component and its source is still remaining by the author. For the usage in commercial applications you need to pay US-$ 20 or DEM 36 for an one programmer's license.

The component TTabRuler is only Shareware, which means that you may use the included trial version only for testing. The unregistered trial version of TTabRuler works only while the Delphi IDE is running and is also limited to 6 tabulators. You need to pay for non-commercial usage US-$ 30/DEM 53 (US-$ 50/DEM 89 with source code) and for commercial usage US-$ 50/DEM 89 (US-$ 70/DEM 125 with source code) to get a registered version (including TRuler) by the author. See the file order.txt for the full price list and additional charges for packing and postage.

Cash, eurocheques or postal money orders are acceptable. See the file payment.txt if you aren’t sure how to arrange payment.

See also the file license.txt for the license agreement and disclaimer of warranty.

Any error reports or suggestions are welcomed – also any nice stuff from the lovely and wonderful Gloria Estefan.

Contact addresses of the author:

Postal mail: Martin Krämer, Adolf-Kolping-Str. 4, D–49179 Ostercappeln (Germany)

E-mail: kraemer@mathematik.Uni-Osnabrueck.DE

File list

ruler.doc:	Documentation (this file).

summary.txt:	Text file with a short description for a first impression.

license.txt:	Text file with the license agreement and disclaimer of warranty.

order.txt:	Text file with a form to order or register the ruler components.

payment.txt:	Text file with additional information on payment.

helpn\ruler.hlp:	Help file for all the stuff in ruler.pas (context-sensitive help only in a registered version).

helpn\ruler.kwf:	Keyword file for ruler.hlp for Delphi 1 and 2 (only in a registered version).

helpn\ruler.cnt:	Contents file for ruler.hlp for Delphi 2 and 3.

helpn\ruler.toc:	Contents include file for ruler.hlp for Delphi 2 and 3.

source\fsreg.pas:	Source code for registration of the components in ruler.pas.

source\fsreg16.dcr:	Bitmap ressource file for the registration in Delphi 1.

source\fsreg32.dcr:	Bitmap ressource file for the registration in Delphi 2 and 3.

source\ruler.pas:	Source code for the ruler components (only in a registered version with source).

source_ruler.pas:	Limited source code for the TRuler component (must be renamed to ruler.pas).

source\ruler.res:	Bitmap ressource file for ruler.pas for Delphi 1.

source\ruler32.res:	Bitmap ressource file for ruler.pas for Delphi 2 and 3.

libn\ruler.dcu:	Compiled unit with TRuler and a trial version (if unregistered) of the TTabRuler component.

demo.zip:	Zip-compressed file containing a demonstration project.

tabdemo.zip:	Zip-compressed file containing a demonstration project for TTabRuler.

(n stands for the Delphi version)

Installation

Installing the components in Delphi 1

Copy all files from the source and lib1 directories in a common directory (for an Update use the old directory and delete at least all old .dcu-files – this is important!).

Run Delphi.

For the first time installation do the following steps; for an Update just select Options|Rebuild Library which ends the updating (goto step 8).

Select Options|Install Components and add the previous choosen directory to the search path if necessary.

Select Add and type in FSReg (preferred) or Ruler (then you must manually rename the proper .dcr-file to ruler.dcr) as module name.

Select OK.

After successful compiling of the library TRuler and TTabRuler will be shown on the component page Futura (or Samples).

After this step where the correct .dcu-files were created you may move the .pas-files to a different directory, so that Delphi won’t unnecessarily recompile this ones.

Installing the components in Delphi 2

Copy all files from the source and lib2 directories in a common directory (for an Update use the old directory and delete at least all old .dcu-files – this is important!).

Run Delphi.

For the first time installation do the following steps; for an Update just select Component|Rebuild Library which ends the updating (goto step 8).

Select Component|Install and add the previous choosen directory to the search path if necessary.

Select Add and type in FSReg (preferred) or Ruler (then you must manually rename the proper .dcr-file to ruler.dcr) as module name.

Select OK.

After successful compiling of the library TRuler and TTabRuler will be shown on the component page Futura (or Samples).

After this step where the correct .dcu-files were created you may move the .pas-files to a different directory, so that Delphi won’t unnecessarily recompile this ones.

Installing the components in Delphi 3

Copy all files from the source and lib3 directories in a common directory (for an Update use the old directory and delete at least all old .dcu-files – this is important!).

Run Delphi.

For the first time installation do the following steps; for an Update goto step 11.

These steps are only for the first time installation:

Select Component|Install component and add the previous choosen directory to the search path if necessary.

Type in FSReg (preferred) or Ruler (then you must manually rename the proper .dcr-file to ruler.dcr) as module name.

Choose an existing package (e. g. C:\Program Files\Delphi 3\Lib\dclusr30.dpk) or create a new one.

Select OK.

After successful compiling of the package TRuler and TTabRuler will be shown on the component page Futura (or Samples).

Select File|Save to save the package source file.

Goto step 13.

These steps are only for an Update:

Select File|Open... and open the old package (e. g. C:\Program Files\Delphi 3\Lib\dclusr30.dpk).

In the Package Editor window select Compile.

These steps are for all installations:

Select File|Close to close the Package Editor window.

After this step where the correct .dcu-files were created you may move the .pas-files to a different directory, so that Delphi won’t unnecessarily recompile this ones.

Installing the help files for Delphi 1

Make sure that Delphi is not running.

Copy the file help1\ruler.hlp to your existing \delphi\bin directory. Copy the file help1\ruler.kwf to your existing \delphi\help directory.

Run the Delphi Help File Installer program (HelpInst), located in your Delphi program group – it is located in the \delphi\help directory.

Select File|Open... and open the file delphi.hdx in your \delphi\bin directory.

For the first time installation select Keywords|Add Keyword File... and add the file ruler.kwf in your \delphi\help directory to the list of keyword files being displayed; for an Update just skip this step.

Select File|Save to save and compile the modified .hdx-file. Depending on your CPU, this process may take up to 30 seconds.

Select File|Exit to terminate the Help File Installer program.

Installing the help files for Delphi 2

Make sure that Delphi is not running.

Copy all files from the help2 directory to your existing Delphi 2.0\Help directory.

Run the Delphi Help File Installer program (HelpInst), located in the Delphi 2.0\Help\Tools directory.

Select File|Open... and open the file Delphi.hdx in your Delphi 2.0\Bin directory.

For the first time installation select Keywords|Add Keyword File... and add the file Ruler.kwf in your Delphi 2.0\Help directory to the list of keyword files being displayed; for an Update just skip this step.

This step is only necessary for an Update: Select Options|Search Paths... and enter in the box the path to your Delphi 2.0\Help directory (e. g. C:\Program Files\Delphi 2.0\Help).

Select File|Save to save and compile the modified .hdx-file. Depending on your CPU, this process may take up to 30 seconds.

Select File|Exit to terminate the Help File Installer program.

For the first time installation do the following steps; for an Update just run „winhelp -g Delphi“ in your Delphi 2.0\Help directory to rebuild the help configuration file which ends the updating (skip all the following steps).

Run NotePad and open the file Delphi.cnt in the Delphi 2.0\Help directory.

Insert the three lines in bold:�	:Title Delphi Help�	:Index Component Writer's Guide =cwg.hlp�	:Index Delphi Library Reference =vcl.hlp�	:Index Object Pascal Reference =obpascal.hlp�	:Index VCL Ruler Component Reference=ruler.hlp�	:Link obpascal.hlp�	:Link ruler.hlp�	(...)�	:Include dbddesk.cnt�	:Include cwg.cnt�	:Include vcl.cnt�	:Include ruler.toc�	:Include obpascal.cnt�	:Include pvcs.cnt�	:Include dbexplor.cnt�	:include imagedit.cnt�	:Include win32sdk.cnt�	1 Delphi Glossary�	2 Glossary=glossary�	:Include winhlp32.cnt

Save the file and then exit NotePad.

Installing the help files for Delphi 3

Make sure that Delphi is not running.

Copy all files from the help3 directory to your existing Delphi 3\Help directory.

For the first time installation do the following steps; for an Update just run „winhelp -g Delphi3“ in your Delphi 3\Help directory to rebuild the help configuration files which ends the updating (skip all the following steps).

Run NotePad and open the file Delphi3.cfg in the Delphi 3\Help directory.

Insert the line in bold:�	; Third-Party Help�	;-----------------�	:Link quickrpt.hlp�	:Link teechart.hlp�	:Link imagedit.hlp�	:Link ruler.hlp

Save and close the file.

Open the file Delphi3.cnt in the Delphi 3\Help directory.

Insert the two lines in bold:�	; Index section�	;==============�	:Index VCL Object and Component Reference=vcl3.hlp�	:Index Object Pascal Reference =obpascl3.hlp�	:Index VCL Ruler Component Reference=ruler.hlp�	...�	; Include section�	;================�	:include vcl3.cnt�	:Include ruler.toc�	:include obpascl3.cnt�	:Include win32sdk.toc�	:Include winhlp32.cnt

Save the file and then exit NotePad.

Precision

All drawing routines use the same algorithm for mapping virtual units to device units as the Windows Graphics Device Interface (GDI) do. This means that all divisions are rounded integer divisions with the following effects:

All ruler margins and marks are very accurate and exact if you use the Windows GDI mapping mechanism for drawing in the associated WYSIWIG window.��Note: Microsoft uses in their word processors the GDI algorithm with rounding for drawing in the text window, but a separate algorithm without rounding for drawing the rulers, so that these aren’t the most accurate ones.�

The Windows GDI has a mapping bug around the device origin, because it rounds negative values identical as positive ones, so that with even scalings the device origin unit (interval]-0.5, 0.5[for origin 0) is smaller than all other device units (like intervals]-1.5, -0.5] or [0.5, 1.5[), because both margins are excluded.�

Due to the two separate mapping possibilities the ruler also has one more special rounding correction for a scale origin different from the base origin to obtain the highest possible accuracy even with integer arithmetic. But in this case it’s more difficult to let the GDI bug appear at the „right“ device unit – and this is still not done yet.

Tasks

This section describes some common tasks for using the component. For detailed information see the Properties section.

First step examples

The following two examples result in the same layout, but in the first example you have virtual units of 1 mm and in the second one virtual units of 1 cm.

If 1 pixel should be equal to 2 mm, then you must set the PixelExtent and ScalePixelExtent properties to 1 and the BaseExtent and ScaleExtent properties to 2.�If you want every 100 mm a numbered mark, then you must set the ScaleInterval property to 100. And if you want to display only the hundredth part (a 1 for 100, a 2 for 200, etc.), then you must set the ScaleUnit property to 100 (the default value).�If you want every 10 mm a small mark, then you must set the ScaleDivision property to 10.�

If 1 pixel should be equal to 0.2 cm, then you must first scale up the values to integers, e. g. 10 pixels are equal to 2 cm. So you must set the PixelExtent and ScalePixelExtent properties to 10 and the BaseExtent and ScaleExtent properties to 2 (the pair 5 and 1 works as well).�If you want every 10 cm a numbered mark, then you must set the ScaleInterval property to 10. And if you want to display only the tenth part (a 1 for 10, a 2 for 20, etc.), then you must set the ScaleUnit property to 10.�If you want every 1 cm a small mark, then you must set the ScaleDivision property to 1.

Adjust the ruler base unit

If you want to use the same unit (the default is 0.1 mm) as in the according „paper window“ then you can set the BaseExtent/PixelExtent property pair to meet that window’s virtual unit – this works like the Windows SetWindowsExt/SetViewportExt API functions. So you can use the same values for setting up the „paper window“ and the ruler layout.

Reflect the paper layout to the ruler layout

Simply set the paper size and page margin values to the Size, Min and Max properties respectively. If you need an offset to the left paper margin just set the BaseOrigin/PixelOrigin property pair according to your needs – this works like the Windows SetWindowOrg/SetViewportOrg API functions.

Setting up the ruler scale

The origin (zero position) is stored in ScaleOrigin, the main (numbered) interval is set by ScaleInterval with counting the units which are given in ScaleUnit (both defaults are 1 cm) and with a division of ScaleDivision. See also the next section for sizing the scale to display any unit of measure like points, picas, millimeters, inches or whatever you prefer.

Sizing the ruler layout and scale

To size the ruler and/or scale (yes, you can scale each of them separately) you must rescale the BaseExtent/PixelExtent and/or ScaleExtent/ScalePixelExtent pairs to your wishes. And don't forget to adapt the ScaleDivision/ScaleInterval properties if necessary.

Preparing TTabRuler for the use with tabulators

To make the tabulators working you need to declare two permanent zero-filled variables of the type TTabList and assign their addresses with the @-operator to the TabList and EditTabList properties at run-time. The variable assigned to the TabList property must have the field Visible set to True and the Options property of the TTabRuler component should have the elements roShowTabMarks and roTabEditing set.

Key Properties (TRuler and TTabRuler)

property BaseExtent : Integer

The BaseExtent property gives the extend of virtual „base“ units. Together with the PixelExtent, BaseOrigin and PixelOrigin properties it is used to transform all base units to device units (screen pixels). If PixelExtent is set to zero or the pixel resolution per inch then you can use the constants beText (0), beLoMetric (254), beHiMetric (2540), beLoEnglish (100), beHiEnglish (1000) and beTWIPS (1440) for using the standard Windows map modes.

The following transformation formula is used:

[Device coordinate] = ([Base coordinate] – BaseOrigin) × PixelExtent / BaseExtent + PixelOrigin.

property BaseOrigin : Integer

The BaseOrigin property gives the origin value of the base coordinate system. Together with the PixelOrigin, BaseExtent and PixelExtent properties it is used to transform all base units to device units (screen pixels). See the BaseExtent property for more information.

Note: Before the base coordinate zero the ruler bar will be dark grayed and no scale will be shown.

property BasePrecision : Integer

The BasePrecision property can be used to specify the base precision for the user method GetBasePos. The value is specified in base units (see the BaseExtent property for more information). The value 0 disables the scaling which in fact sets the precision to 1 device unit (screen pixel).

property BorderStyle : TBorderStyle

The BorderStyle property specifies if the ruler bar and sections are framed (bsSingle) or not (bsNone).

property Color : TColor

The Color property specifies the background color of the active area (between Min and Max) in the ruler bar.

property CursorPos : Integer

The CursorPos run-time property can be used to specify the position of a text cursor. The ruler bar shows a small triangle at this value. The value is specified in device units (screen pixels). A negative value (-1) lets the triangle disappear. See also the Options property.

property Font : TFont

The Font property specifies the font used for drawing the numbers and the Font.Color property specifies also the foreground color of the ruler scale (the numbers and marks).

property Kind : TRulerKind

The Kind property specifies if the ruler bar will be displayed horizontally (rbHorizontal) or vertically (rbVertical).

property Max : Integer

The Max property can be used to specify the right page margin or the end of an active area. The ruler bar will be grayed behind this value. The value is specified in base units (see the BaseExtent property for more information).

property Min : Integer

The Min property can be used to specify the left page margin or the beginning of an active area. The ruler bar will be grayed before this value. The value is specified in base units (see the BaseExtent property for more information).

property MousePos : Integer

The MousePos run-time property can be used to specify the position of the mouse cursor. The ruler bar shows a line at this value. The value is specified in device units (screen pixels). A negative value (-1) lets the line disappear. See also the Options property.

property Options : TRulerOptions

The Options property is a set of characteristics of the ruler bar. The set can contain the following values:

roShowMousePos: The value True lets show the position of the mouse cursor specified in the MousePos property.

roShowCursorPos: The value True lets show the position of the text cursor specified in the CursorPos property.

roShowTabMarks: The value True lets show the positions of the tabulators specified in the TabList property (this option is only used by TTabRuler).

roTabEditing: The value True lets the user add, move and remove tabulators in the ruler bar by using the mouse if a tab list is specified in the EditTabList property (this option is only used by TTabRuler).

property PixelExtent : Integer

The PixelExtent property gives the extend of device units for the ruler bar. Together with the BaseExtent, PixelOrigin and BaseOrigin properties it is used to transform all base units to device units (screen pixels). If the value is zero then the true extend is got from the PixelsPerInch property of the parent form or the screen. See the BaseExtent property for more information.

property PixelOrigin : Integer

The PixelOrigin property gives the origin value of the device coordinate system. Together with the BaseOrigin, PixelExtent and BaseExtent properties it is used to transform all base units to device units (screen pixels). See the BaseExtent property for more information.

property ScaleDivision : Integer

The ScaleDivision property is used to specify the ruler scale division, i. e. the distance between the small marks of the scale. The value is specified in ruler scale units (see the ScaleExtent property for more information).

property ScaleExtent : Integer

The ScaleExtent property gives the extend of virtual „ruler scale“ units. Together with the ScalePixelExtent and ScaleOrigin properties it is used to transform all ruler scale units to device units (screen pixels). If ScalePixelExtent is set to zero or the pixel resolution per inch then you can use the constants beText (0), beLoMetric (254), beHiMetric (2540), beLoEnglish (100), beHiEnglish (1000) and beTWIPS (1440) for using the standard Windows map modes.

The following transformation formula is used:

[Device coordinate] = [Ruler scale coordinate] × ScalePixelExtent / ScaleExtent

			+ (ScaleOrigin – BaseOrigin) × PixelExtent / BaseExtent + PixelOrigin.

property ScaleInterval : Integer

The ScaleInterval property is used to specify the ruler scale interval, i. e. the distance between the numbered large marks of the scale. The value is specified in ruler scale units (see the ScaleExtent property for more information) and should be an integer multiple of the ScaleDivision and ScaleUnit properties by itself.

property ScaleOrigin : Integer

The ScaleOrigin property gives the position of the origin value of the ruler scale coordinate system. The value is specified in base units (see the BaseExtent property for more information).

Note: This property works a bit different than the BaseOrigin and PixelOrigin properties, because its main goal is to let the user easily specify the zero mark of the ruler scale.

property ScalePixelExtent : Integer

The ScalePixelExtent property gives the extend of device units for the ruler scale. Together with the ScaleExtent and ScaleOrigin properties it is used to transform all ruler scale units to device units (screen pixels). If the value is zero then the true extend is got from the PixelsPerInch property of the parent form or the screen. See the ScaleExtent property for more information.

property ScalePrecision : Integer

The ScalePrecision property can be used to specify the ruler scale precision for the user method GetScalePos. The value is specified in ruler scale units (see the ScaleExtent property for more information). The value 0 disables the scaling which in fact sets the precision to 1 device unit (screen pixel).

property ScaleUnit : Integer

The ScaleUnit property is used to specify the unit of measure on which the numbering of the large scale marks is based. The value is specified in ruler scale units (see the ScaleExtent property for more information).

property Size : Integer

The Size property can be used to specify the paper size. The ruler bar will be dark grayed and no scale will be shown behind this value. The value is specified in base units (see the BaseExtent property for more information). A negative value (-1) makes the size infinite.

property Transparent : Boolean

The Transparent property specifies if the ruler background is transparent or painted with the given Color property and some gray colors for the margin areas. At the moment this works not fine in some cases like moving the component, where it will not correctly invalidated. Unfortunately this seems to be a Delphi lack.

Another bug was found in my Spea video driver which reduces the size of a transparent rectangle by one pixel. You can check this out by putting two TShape components over each other and setting ones Brush.Style property to bsClear – if the right border lines still remain over each other then your driver is ok. If the lines don’t match then check out for a new driver in the future – or simply buy a new graphics card.

Key Properties (TTabRuler)

property DefaultTabPos : Integer

The DefaultTabPos property can be used to specify a default tabulator position interval which appears first after the last normal tab position. The value is specified in base units (see the BaseExtent property for more information). The value 0 disables the default tabulator. See also the Options property.

property EditTabList : PTabList

The EditTabList run-time property is used to specify a tabulator list for holding the moving tabs while the user edits them interactively. See also the Options property.

property TabCount : Integer

The TabCount run-time and read-only property gives the number of shown tabs. This is the same as TabList^.Count. See also the Tabs property.

property TabKind : TRulerTabKind

The TabKind property is used to specify the tabulator kind which will be used if the user sets interactively a new tabulator.

property TabList : PTabList

The TabList run-time property is used to specify the tabulator list whose tabs will be shown. See also the Options property.

property TabPrecision : Integer

The TabPrecision property can be used to specify the tabulator scale precision, i. e. the integer scale on which a tabulator can be set. The value is specified in base units (see the BaseExtent property for more information). The value 0 disables the tabulator scale which in fact sets the scale precision to 1 device unit (screen pixel).

property Tabs[Index : Integer] : PRulerTab

The Tabs run-time and read-only property is an array of pointers to all shown tabs sorted by their base positions. This is the same as @(TabList^.Tabs^[Index]). See also the TabCount and TabList properties.

Key Methods (TRuler and TTabRuler)

function GetBasePos(var PixelPos : Integer) : Integer;

The method GetBasePos can be used to transform a device coordinate into a base coordinate. If the BasePrecision property is not 0, then the base coordinate will be rounded to become an integer multiple of BasePrecision and the argument PixelPos can be changed to match this result.

function GetPixelPos(Pos : Integer) : Integer;

The method GetPixelPos can be used to transform a base coordinate into a device coordinate.

function GetScalePixelPos(Pos : Integer) : Integer;

The method GetScalePixelPos can be used to transform a ruler scale coordinate into a device coordinate.

function GetScalePos(var PixelPos : Integer) : Integer;

The method GetScalePos can be used to transform a device coordinate into a ruler scale coordinate. If the ScalePrecision property is not 0, then the ruler scale coordinate will be rounded to become an integer multiple of ScalePrecision and the argument PixelPos can be changed to match this result.

Key Methods (TTabRuler)

function AddTabPos(var TabList : TTabList; NewPos : Integer) : Integer;

The method AddTabPos can be used to add a new tabulator at the proper base unit position NewPos in the specified tab list. The index of the new tab will be returned. If a tabulator already exists at the specified position, then no tab will be added and only the index of that tab will be returned.

procedure AssignTabs(var DestTabList : TTabList; const SourceTabList : TTabList);

The method AssignTabs can be used to copy all tabulators from the tab list SourceTabList to the tab list DestTabList. All existing tabulators from the tab list DestTabList will be removed before it.

function ChangeTabPos(var TabList : TTabList; Index : Integer; NewPos : Integer) : Integer;

The method ChangeTabPos can be used to move a tabulator from the index Index to the base unit position NewPos in the specified tab list. The new index of the tab will be returned.

procedure ClearTabList(var TabList : TTabList);

The method ClearTabList can be used to remove all tabulators from the specified tab list.

procedure DeleteTab(var TabList : TTabList; Index : Integer);

The method DeleteTab can be used to remove a tabulator at the index Index from the specified tab list.

function FindNextTabPos(const TabList : TTabList; Pos : Integer; var NextPos : Integer) : Integer;

The method FindNextTabPos can be used to find the first tabulator in the specified tab list or the first default tabulator whose base unit position is greater than Pos. The index of the found tab or –1 for a default tab will be returned and NextPos contains the base unit position. If no matching tabulator is found, then –2 will be returned and the position is set to 0.

function GetTabPixelPos(Pos : Integer) : Integer;

The method GetTabPixelPos can be used to transform a tabulator coordinate (a base coordinate with Min as the origin) into a device coordinate.

function GetTabPos(var PixelPos : Integer) : Integer;

The method GetTabPos can be used to transform a device coordinate into a base coordinate with Min as the origin (all tabulator positions are specified in this coordinate system). If the TabPrecision property is not 0, then the tabulator coordinate will be rounded to become an integer multiple of TabPrecision and the argument PixelPos can be changed to match this result.

procedure MoveAllTabsBy(var TabList : TTabList; Distance : Integer);

The method MoveAllTabsBy can be used to move all tabulator positions by the base unit Distance in the specified tab list.

procedure RefreshTabs(var TabList : TTabList);

The method RefreshTabs can be used to refresh the field PixelPos of all tabulators in the specified tab list. Normally you don’t need to call this method directly, because this field will be maintained by the TTabRuler component if a tabulator position or the mapping changes.

Key Events (TRuler and TTabRuler)

property OnPaint : TNotifyEvent

The OnPaint event will be called every time the ruler bar and scale are painted. Here you can make your own extensions to the ruler component like painting tabulator marks or something else. For this reason the Canvas property is made public. You can also use the common published mouse events for special tasks.

Key Events (TTabRuler)

property OnEditTabChange : TNotifyEvent

The OnEditTabChange event will be called every time after the edit tab list is modified. At the final tab list modification this event will be called before the OnTabChange event. Here you can track the moving tabs in your edit window by drawing lines.

property OnEditTabChanging : TNotifyEvent

The OnEditTabChanging event will be called every time before the edit tab list will be modified. At the final tab list modification this event will be called after the OnTabChanging event. Here you can remove your previously drawn edit tab lines.

property OnTabChange : TNotifyEvent

The OnTabChange event will be called every time after the tab list is finally modified. Here you should reformat your edit text.

property OnTabChanging : TNotifyEvent

The OnTabChanging event will be called every time before the tab list will be finally modified. Here you can save the old tabs for an undo function.

Types

TRulerTabKind

The type TRulerTabKind is used to specify the tabulator kind, i. e. normally the alignment of text at the tabulator position.

TRulerTabKind = (tkDefault, tkLeftJustify, tkCenter, tkRightJustify, tkDecimal, tkLine).

tkDefault:	Default tab kind (usually tkLeftJustify).

tkLeftJustify:	Left or top justified text.

tkCenter:	Horizontally or vertically centered text.

tkRightJustify:	Right or bottom justified text.

tkDecimal:	Decimal point or baseline aligned text.

tkLine:	Vertical or horizontal line.

TRulerTabState

The type TRulerTabState is used to specify the tabulator state.

TRulerTabState = (tsNormal, tsEditing, tsFixed, tsDisabled).

tsNormal:	Normal tab.

tsEditing:	Normal tab which is edited interactively.

tsFixed:	Fixed tab (can’t be edited interactively).

tsDisabled:	Tab is disabled.

TRulerTab and PRulerTab

The type TRulerTab is used to specify a single tabulator.

PRulerTab = ^TRulerTab;

TRulerTab = record

 State : TRulerTabState;

 Kind : TRulerTabKind;

 Pos : Integer;

 PixelPos : Integer;

end;

State:	Specifies the current tabulator state.

Kind:	Specifies the tabulator kind.

Pos:	Specifies the tabulator position in base units with Min as the origin.

PixelPos:	Specifies the tabulator position in device units (screen pixels). This value will be normally maintained by the associated TTabRuler component if the tab position or the mapping changes.

TTabList and PTabList

The type TTabList is used to specify a complete tabulator list (for one paragraph).

PTabList = ^TTabList;

TTabList = record

 Visible : Boolean;

 FixedCapacity : Boolean;

 Capacity : Longint;

 Count : Longint;

 Tabs : PRulerTabs;

end;

Visible:	The value True lets show the positions of the tabulators specified in the field Tabs.

FixedCapacity:	The value True specifies that the tab list has a fixed capacity, which means that the list must not grow to hold more tabulators than specified in the field Capacity.

Capacity:	Specifies the current capacity of the tab list. This value may be altered due to tab changes when the field FixedCapacity is set to False.

Count:	Specifies the current number of tabulators hold in the list.

Tabs:	Points to an array of TRulerTab which holds the single tabulators sorted by their base positions. This pointer may be altered due to tab changes when the field FixedCapacity is set to False.

User-interactive tabulator support

The user can add, move and remove tabulators in the ruler bar by using the mouse. The following actions are possible:

Pressing the left mouse key in the ruler bar starts adding a new tabulator at the mouse position or selects a tabulator if there is one already set.

Pressing the left mouse key while holding the Shift key always selects the tabulator nearest to the mouse position. And because moving or releasing the mouse key while holding the Shift key performs no action, you can select more than one tab and then start an action simultaneously on all selected tabulators.

Moving the mouse while the left mouse key is pressed starts moving or removing (if the mouse is outside the ruler bar) all selected tabulators.

Pressing the Escape key while the left mouse key is pressed cancels the current action and leaves all selected tabulators at their previous positions.

Releasing the left mouse key or pressing the Return key completes the previously started action and updates the tabulator positions.

History

Version 1.0 (05.08.1996): First public release for Delphi 1.0 (can also be used with Delphi 2.0 if recompiled).

Version 1.01 (31.08.1996): Added a new registration file for easy install in Delphi 1.0 and 2.0.

Version 1.02 (15.02.1997): The constant SPEAVIDEO for working around a bug in some Spea video drivers is no longer supported.

Added Windows 95 style support.

Added the property MousePos.

Added a demonstration project.

Version 1.03 (25.08.1997/18.11.1997): Modified for use with Delphi 3.0.

Version 1.04 (25.11.1997): One internal variable is upsized to Longint for Delphi 1.0 to avoid an endless-loop on painting with a pair of large ScaleExtent/small ScalePixelExtent values. However this can still happens in 32-bit Delphi with a large ratio between ScaleExtent and ScalePixelExtent like 2,000,000 : 1.

Added the property CursorPos.

Added the property Options.

Update of the demonstration project.

Version 2.00 (01.02.1998): Added the TRuler descendant TTabRuler component with complete programmable and user-interactive tabulator support.

The complete ruler scale will be always centered vertically (horizontal ruler) or horizontally (vertical ruler).

The Font property supports the auto-detect Windows 95 style on creation (this affects only new creations at design time, because font properties are always stored).

Added the properties BasePrecision and ScalePrecision.

Added the methods GetBasePos, GetPixelPos, GetScalePixelPos and GetScalePos.

Added help fil
