TDspquery component pack

Introduction

This is a component pack designed to get the maximum speed creating database applications. There are five components:

· TDspQuery: An advanced TQuery component with many enhancements

· TAdvDspQuery: Like TDspQuery but fastest locating records (and of course, much better than TQuery component). It gets nearly the same performance of a TTable locating records. It is specially designed to work in applications that handle a very large amount of data.

· TDspDataSource: A component to synchronize a TAdvDspQuery component with a dataset. Used to work with TDbGrids.

· TRefreshFrmDb: will refresh all the datasets that are open, in dsbrowse state and not linked to any datasource in the DataModule or in the Form where the component is. It will refresh every x seconds.

· TRefreshAllDb: will do the same as TRefreshFrmDb but it will do for all the datasets that are in the application.

Generally is better work with TQuerys rather than with TTables. With TQuerys components, I use SQL (server specified SQL) that works better.

Why use TQuerys instead of TTables?

· I can sort the result set by any field (or several fields) ascending or descending, without the need of indexes that must be used with TTable components. The server will use the indexes automatically.

· I can use any kind of query without having to get defined as views in the server.

· You have more control about what is send to the server.

Problems using TQuerys instead of TTables.

· When inserting records in a TQuery, we must reexecute the query to read the new record. This can be an advantage because if we use TTables and the server changes the value of any field of the record (default values, calculated, etc), the TTable doesn’t get these values, and if we edit and post the inserted record, we will fire and exception (record changed by another user).

· Locate method executed in a TQuery is very slow if you are working with a large result set.

General problems to TQuerys and TTables

· The OnCalcField event is fired always. Whenever a field changes it’s value the OnCalcField fires. If it is a complex method it can slow down the application.

· You can access the oldvalues only if you are working with cachedupdates.

With the TDspQuery component you will avoid these problems and get a better performance when accessing to the data. It works like a dataset, so you can use any database control.

Installation

Unzip to a directory and add the DspQueryDesign.dpl package. Copy the DspQueryPkg.dpl file to your windows system directory.

TDspQuery 1.5 [image: image1.png]

Introduction

This component is an improved version of the standard TQuery component.

With this component you

· Will have access to the old values of a record without using cached updates

· Special lookupfields, that retrieve the information directly from the database and not from a dataset using the minimum amount of queries (not as the standard LookupFields do). Also, you will save memory and network trafic because you will only retrieve the necessary data. Now, with Delphi you have to define a dataset with the necessary fields or use the dataset used to insert and edit, but retrieving all the fields from a record.

· Better use of CalcFields. Now you can define events that fire only when you want (when a field or fields changes its values). Instead of having one event for all your calcfields that is called every time a field changes its value, you can define particular events where calculate CalcFields only when the required fields to do the calculation change. Also there is a new event (OnCustomCalcFields) that is fired as the normal OnCalcFields event but you know witch field has fired the event. You must apply the rules of the OnCalcFields event to the OnCustomCalcFields, that is, not to modify the same field that fired the event because it will create recursive calls.

· New states. Now you can know when a record is being deleted. When you have master-detail relations, it could be helpful to know in the parent it’s being deleted. Imagine you have two tables, Orders and OrderLines. When you delete an OrderLine, you want to subtract the total of the line from the Orders Total, and when you delete an Order, delete all the OrderLines associated. To prevent the updates to the Order every time an OrderLine is deleted you can check if the OrderLine is being deleted because of the deletion of the parent Order.

· In master-detail relations, automatically set the detail key values from the master dataset.

· After insert a record, autoreload that record, allowing to read the default values (or calculated) set by the database server. This will avoid the ‘Another user has changed the record’ error that is common to the TTable component.

· Autocancel posts. When you post a record, if there is an error, the dataset will stay in Edit or Insert mode, causing several errors later. Now, instead of using the post method you can use the SafeSave method that will bring the dataset to the browse state.

· ParentFields. You can define special fields that get their value from a parent dataset directly.

· VirtualFields. Fields like Calculated Fields but can be edited by the user or set directly.

· Document the component. You can enter a description (only available at design-time) for a better documentation of your program. If you forget what was the use of the component, you can read it from the component!

· New property Flags. Is a set of five boolean values (Flag1, Flag2, Flag3, Flag4, Flag5) that you can check.

· How to define the new fields?

· LookupFields. Create a new field of type Calculated and set these properties:

· KeyFields: The fields of this dataset used to search

· LookupKeyFields: The fields of the lookuptable used to search

· LookupResultField: The result field from the lookuptable

· Origin: The table name where we must search

Ex: Search for a currency change in the table Currency

KeyFields: IdCurrency

LookupKeyFields: IdCurrency

LookupResultField: Change

·
Origin: Currency

· ParentFields. Create a new field of type Calculated and set the Origin property to the name of the father field. (The DspQuery must have a parent via DataSource property). The LookupResultField property must be empty.

Ex: Get the currency Id from the parent Orders dataset to the OrderLines.

·
Origin: IdCurrency

· VirtualFields. Create a new field of type fkData and set the tag property to 255.

Properties, methods and events

{Public declarations}

procedure Refresh; virtual;

Refresh the query and the data in the current record.

function SameValue(FieldName: String): Boolean;

It returns true if the Field hasn't change its value.

Ex. If not SameValue(‘Price’) then …

function DistinctValue(FieldName: String): Boolean;

Not SameValue.

function ValuesChanged(FieldNames: string): Boolean;

With a list of Fields, separated by ‘;’, it returns true if any of the fields has changed its value.

Ex. If ValuesChanged(‘Customer;TaxRate’) then …

function HasDirectChild: Boolean;

If the TdspQuery has associated (with ChildTable property) a dataset. It is supposed to be use if we want to make changes in an associated child dataset.

procedure AddCalcEvent(Fields: String; Event: TDataSetNotifyEvent; ChangedAll: Boolean);

Add a CalcEvent (a event that is called only when all or any of the fields specified in the Fields parameter changes its value). If the changed all parameter is true, then the event will be called only when all the fields have changed their values. If it is false, then the event will be called if any of the fields changed its value.

You should add these events before opening the DspQuery.

Ex. AddCalcEvent(‘Price;Amount’, CalcTotalPrice, False);

Procedure CalcTotalPrice(DataSet: TdataSet);

Begin

DataSet[‘TotalPrice’] := DataSet[‘Price’] * DataSet[‘Amount’];

End;

procedure RefreshCache;

Refresh the cache for the lookup fields. For better performance, instead of reexecuting the search for lookup fields, the values are stored in a cache that get refreshed every LookupCacheRefresh that is read. If the value for LookupCacheRefresh is 0 then it is always in the cache.

procedure SafeSave;

It does a post, but if there is an exception, then cancels the edit. Useful when you are doing a post from code and don’t want to leave the record in Edit or Insert state if there is a problem.

procedure ReFilter;

Refilter the TdspQuery (if you have something defined in the filter property or in the onFilter event). Same as set Filtered := False and then Filtered := True;

property OldValues: TFieldValuesList;

Returns the oldvalue for a field.

Ex: if DataSet[‘Price’] < OldValues[‘Price’] then …

property OldState: TdataSetState;

The previous state. This is useful after you have post the changes if you want to know if you where inserting or editing a record.

Ex: If OldState = dsEdit then …

property Deleting: Boolean;

If the record is being deleted.

{ Published declarations }

property AutoCreateFather: Boolean;

If this is a detail dataset with a parent associated using the DataSource property, when inserting a new record, the Key fields will have the values of the father record.

property AutoRefresh: Boolean;

After post a new field, it will reexecute the query to load the record and the default values set by the database.

property ChildTable: TDBDataSet;

The direct child table for this TdspQuery.

property Description: TStrings;

Description of the object. It is for documentation purposes. It allows to comment the object and do a clear programming for you and other programmers. At runtime, there is no description, to save memory.

property DspState: TDspDataSetState;

Other states for the TdspQuery:

TDspDataSetState=(dspNormal,dspDeleting, dspVirtualFieldsEvent);

DspNormal = Normal operations;

DspDeleting = Deleting the current record;

DspVirtualFieldsEvent = Executing the VirtualFieldsEvent.

property LookupCacheCount: LongInt;

How many lookup fields values will be cached. Default 1000;

property LookupCacheRefresh: LongInt;

How many reads are necessary to refresh the cache for a lookup field. 0 will refresh never. If it’s in the cache it will be there always. If the record changes, the lookup field will return an invalid value. If you wish to avoid this, set the value to 1.

property RefreshFields: String;

The key fields that will be used to refresh the DspQuery. When reopening, they will be used to find the record. If it’s empty then bookmarks will be used (if the server changes the register then maybe it wouldn’t be find). Separate the fieldnames with ‘;’.

property SaveOldValues: Boolean;

If you want to work with oldvalues.

Events

TCustomCalcField = procedure(DataSet: TDataSet; Field: TField) of object;

property OnCustomCalcFields: TCustomCalcField;

This event is fired every time a field changes. You will know witch field has fired the event. If the Field parameter is nil then all the fields have changed (may be a scroll). It is useful when you want to calculate fields only when a field changes.

property OnVirtualFieldsChange: TCustomCalcField;

This event is fired every time a VirtualField changes. In the field parameter will be the VirtualField that has changed.

TAdvDspQuery [image: image2.png]

Introduction

This component is derived from TDspQuery. The advantage is that it is specially designed to work with very large result sets, locating the records very quickly. You can use any server statement. Within the normal use of this component you will have only one record selected (avoiding locking of tables in the server) and always the most recently data. This feature, used in conjunction with the features of TDspQuery, gives you one of the most fast and powerful component to work with databases, and specially, large databases.

Bad news is that you can’t use the first, last, prior and next methods. But in a large application, working with many records, you will never need this. See the demo application and look how the searches of a register are handled.

You can use parameters (and macros if using the TRxQuery version) as normal.

Properties, methods and events
{Public declarations}

function Locate(const KeyFields: string; const KeyValues: Variant; Options: TLocateOptions): Boolean;

Same as TDataSet.Locate. The only difference is the TLocateOption loCaseInsensitive has no meaning.

Ex: Locate(‘IdCustomer;IdOrder’, VarArrayOf([CustomerId, OrderId]), []);

{ Published declarations }

property FailLocateReload: Boolean; default True;

If true, when a locate fails, it will reexecute the previous query to get the previous record.

property PkFields: string;

PrimaryKey fields or a unique index. Used when getting a bookmark for fastest access when returning to the bookmark.

property LocateCache: Boolean default True;

If you try to do the same locate twice, if LocateCache is false then the second one will be reexecuted, else there won’t be reexecuted.

property SQL: TStrings;

property Where: TStrings;

property Order: TStrings;

With these properties you will define the whole SQL sentence. You must separate your sentence in three parts in order to work. In the SQL property you must write all before the WHERE clause, in the Where property only the WHERE clause and in the Order property the rest of the clause (GROUP BY, HAVING, ORDER BY, …).

Ex: Sentence = ‘SELECT Orders.IdOrder, Orders.IdCurrency, Orders.Code, OrderLines.Item, OrderLines.Description, OrderLines.Amount, OrderLines.Price FROM Orders INNER JOIN OrderLines ON Orders.IdOrder = OrderLines.IdOrder WHERE Orders.IdCustomer = :IdCustomer ORDER BY Item Desc’

SQL.Add(‘SELECT Orders.IdOrder, Orders.IdCurrency, Orders.Code, OrderLines.Item,OrderLines.Description,OrderLines.Amount,OrderLines.Price FROM Orders INNER JOIN OrderLines ON Orders.IdOrder = OrderLines.IdOrder’);

Where.Add(‘WHERE Orders.IdCustomer = :IdCustomer’);

Order.Add(‘ORDER BY Item Desc’);

TDspDataSource [image: image3.png]

Introduction

This component enables you to maintain a TDspQuery component and a dataset synchronized. The dataset is connected to the TDBGrid and any scroll on the dataset will locate the same record and reverse, any record change in the TDspQuery and will be located in the associated dataset. You can have in a DataModule a TDspQuery with all the records available but in a form use some filters but you don’t want to apply the filter to the global TDspQuery. With the TDspDataSource you can do very easy.

Properties, methods and events

{ Published declarations }

property DspQuery: TDspQuery;

The TDspQuery to synchronize.

property AllowNullValues: Boolean default False;

If the search is done even if there is null values in the keyfields.

property AutoLocate: Boolean default True;

If the TDspDataSource is active and must synchronize both datasets.

property AutoClose: Boolean default False;

If there isn’t records to find (the dataset is empty) close the TDspQuery.

property KeyFields: String;

The fields used to locate. These fields must exist in the TDspQuery component and in the Dataset component.

TRefreshFrmDb [image: image4.png]

Introduction

Component used to refresh all the active datasets in a Form or DataModule. It will reload the data every x seconds.

Properties, methods and events
{Public declarations}

procedure RefreshNow;

Refreshed the datasets now.

{ Published declarations }

property Active: Boolean;

property Interval: Cardinal;

Seconds between refreshs.

property TableRefresh: boolean default False;

If the TTable components must be refreshed calling to the Refresh method or closing and opening. By default close and open.

TAfterRefreshDataSetEvent = procedure(Sender: TObject; DataSet: TDataSet) of object;

property AfterRefreshDataSet: TAfterRefreshDataSetEvent;

Event executed after a dataset has been refresh.

TBeforeRefreshDataSetEvent = procedure(Sender: TObject; DataSet: TDataSet; var Cancel: Boolean) of object;

property BeforeRefreshDataSet: TBeforeRefreshDataSetEvent;

Event executed before refresh a dataset. If cancel is set to True, the dataset will not get refreshed.

TRefreshAllDB [image: image5.png]

Introduction

Component like TRefreshFrmDb but used for an application. It will refresh all the dataset components in an application.

Properties, methods and events
{ Published declarations }

TBeforeRefreshDataModuleEvent = procedure(Sender: TObject; DataModule: TDataModule; var Cancel: Boolean) of object;

property BeforeRefreshDataModule: TBeforeRefreshDataModuleEvent;

Event called before refresh a datamodule. If Cancel is set to True, then the datamodule is not refreshed.

TAfterRefreshDataModuleEvent = procedure(Sender: TObject; DataModule: TDataModule) of object;

property AfterRefreshDataModule: TAfterRefreshDataModuleEvent;

Event called after a datamodule has been refreshed.

TBeforeRefreshFormEvent = procedure(Sender: TObject; Form: TForm; var Cancel: Boolean) of object;

property BeforeRefreshForm: TBeforeRefreshFormEvent;

Same as BeforeRefreshDataModule but with a TForm.

TAfterRefreshFormEvent = procedure(Sender: TObject; Form: TForm) of object;

property AfterRefreshForm: TAfterRefreshFormEvent;

Same as AfterRefreshDataModule but with a TForm.

Future Work

· A Delphi 4.0 version (comming soon).
· Add SetRange support.
· Use of more than one field in the lookup fields (keyfields and lookupkeyfields)

· Search only for lookup fields when their key field changes.
· Allow partial locates in TAdvDspQuery. Currently you can define partial matches (LIKE 'Vehic%') using the loPartialKey option. The next step will be to define full partial matches (LIKE '%vehic%').
· In TRefreshFrmDb, better refresh of DataSet associated to master datasets. Currently, maybe not to reposition in the right record.
· A parser to set only the SQL property (not to separate into SQL, Where, Order) in the TAdvDspQuery component.
ShareWare

You can get the latest version and demos at of these components and others at www.euskalnet.net/dsancho/delphi/dspquery/dspquery.htm
If you have any question or idea to implement, send me a mail at dsancho@correo.nu
Comments are welcome.

These components are sell for only US$50 and you can buy at http://www.shareit.com/programs/102629.htm

The source code is not available yet and the price is also not set, but it will be available soon (I am translating to English).

When you register you will receive the working version for every supported compiler of these components and new versions free. Also you will receive a version of TDspQuery derived from the latest version of TRxQuery (RX Components).

I will send you by Email notifications and news.

If you do not have access to the Internet, you can register via phone, fax or postal mail. Please print out the following form, and fax or mail it to:

ShareIt!

element 5 AG

Habsburgerring 3

50674 Koeln

Germany

Phone: +49-221-2407279

Fax: +49-221-2407278

E-Mail: register@shareit.com

US customers may also order by calling 1-800-903-4152 (orders only please!). US check and cash orders can be sent to our US office at

ShareIt! Inc.

PO Box 844

Greensburg, PA 15601-0844

USA

Tel. 724-850-8186

Fax. 724-850-8187

Registration form for TDspQuery

Program No.: 102629

Last name: ___________________________________

First name: ____________________________________

Company: ____________________________________

Street and #: ______________________________________

City, State, postal code: ________________________________

Country: _______________________________________

Phone: _____________________________________

Fax: __

E-Mail: ______________________________________

How would like to receive the registration key/full version?

e-mail - fax - postal mail

How would you like to pay the registration fee of $50:

credit card - wire transfer - EuroCheque - cash

Credit card information (if applicable)

Credit card: Visa - Eurocard/Mastercard - American Express - Diners Club

Card holder: ________________________________

Card No.: ___________________________________

Date of Expiration : ___________________________________

Date / Signature ___________________________

