Shareware replacements for Delphi 3/4 open/save, color, font, page setup, printer setup, print, browse for folder, OLE change icon and OLE insert object common dialog components allowing design-time creation of the custom dialogs.

TFormOpenDialog,

TFormSaveDialog,

TFormColorDialog,

TFormFontDialog,

TFormPageSetupDialog,

TFormPrinterSetupDialog,

TFormPrintCommDialog

TFormFolderDialog

TFormChangeIconDialog

TFormInsertObjectDialog

Version 1.3

Source code:

http://www.shareit.com/programs/100729.htm

History:

1.31 - Code clean up, a mess with "Large fonts" and "Small fonts" is fixed.

1.3 - TFormChangeIconDialog and TFormInsertObjectDialog added.

I have not extensively used these dialogs: there is nothing special about

them, I just did not have a chance to test the dialogs throughly. If you use or

planning to use them, I would love to hear from you.

1.22 - Pretty irritating bug fixed: - when a program using DSDialog.pas is shut

down, breakpoint is sometimes triggered under NT 4.0 in RtlFreeHeap (ntdll.dll). Delphi

cannot properly handle WideString defined as const...

1.21 - Minor bugs fixes. (Occasional flicker on stratup, etc.)

1.2 - Added TFormFolderDialog, some minor bugs fixed

1.1 - Added TFormColorDialog,TFormFontDialog,TFormPageSetupDialog,

 TFormPrinterSetupDialog,TFormPrintCommDialog,TFormFolderDialog.

1.0 - TFormOpenDialog and TFormSaveDialog are supported only.

For the TFormPageSetupDialog and TFormFolderDialog

I used the same constants and methods names as in the excellent components

TPageSetupDialog - Brad Stowers, bstowers@pobox.com and

TFolderDialog - Fred de Jong, frejon@worldonline.nl, fjng@cbs.nl

to facilitate the upgrade to my components.

I did not bother with TFindDialog and TReplaceDialog - they are way too simple; if you want something custom, it will take less time to design the whole dialog from the scratch.

Copyright 1997-1998 Dmitry Streblechenko

dmitrys@asu.edu

(602) 968-3971

	Here is a set of small magic components: drop one of them on ANY form, and at run time the form with all its controls will become a Windows common dialog box.

No more hassle with custom open/save, import/export, color, font, page setup, printer setup and print dialogs.

	At design time you can do anything you would normally do to a Delphi form: drop

other components on it, add event handlers and a bunch of your code. The component will be shown as a panel with a bitmap. The bitmap (see below) is shown only at design time and will not be included in the executable file.

	At run time, Windows will place its normal common dialog controls in place where the component was sitting at design time along with everything else you had on the form. You can use any normal code to resize or reposition the form, do anything you want with the other controls, in other words act as if the common dialog is a Delphi form (which it is not, but you don't need to care about it).

�

Delphi form with TFormOpenDialog component at design time

�

Same form at run time.

Why bother?

	I guess I could write a dozen components to mimic the look and behavior of the common dialog controls. I prefer not to: Microsoft has already done the job for all of us and they did it fairly well (with the exception of a couple minor bugs, call them "features" if you like it that way); another reason is Microsoft might add some new functionality to the common dialogs (say, you can browse the Internet in Windows 20XX.0 using open/save common dialogs). Most important reason is that those dialogs were designed to be extendable; Borland did use this new functionality in its TOpenPicture and TSavePicture dialogs, however, it was done in a completely nonvisual way. With these components, you can create a similar looking dialog in a couple minutes.

Installation

	These components come as a unit for Delphi 3.0. I tried my best to create a Delphi 2.0 version of the components, but it does not seem feasible because of the numerous VCL improvement from version 2.0 to 3.0 that make these components possible.

1) Put dsdialog.dcu, filtedit.dcu and dsdialog.dcr to any directory of your choice.

Dsdialog.dcr has component palette bitmaps (24 x 24) and pretty large bitmaps to show components' background on the form at design time (just screen shots of the corresponding common dialogs). None of those bitmaps will be included in the executable; however, if you do not want to overload your *.dpk file, rename dsdialog.sml to dsdialog.dcr - dsdialog.sml contains only palette bitmaps (3 kB, compared to 380 kB).

2) Click Component | Install component menu in Delphi 3, browse to

dsdialogs.dcu (or dsdialogs.pas if you have received the source code) and click Ok.

Using the components

	1.) At design time create new form in Delphi, add the component you need , any other components and code. Leave form's Visible property false (Delphi does it by default).

	2.) At run time call component's "Execute" method and let it do the job; you don't have to worry about low-level stuff:

procedure TForm1.Button2Click(Sender: TObject);

begin

 ColorForm.ColorDialog.Execute;

end;

where ColorForm is a TForm with TFormColorDialog on it.

Using the components is not much different from using corresponding Delphi common dialog components, the real difference is inner workings.

Look at the demo source code for examples.

Properties and methods

	All properties and methods of the similar Borland components are still valid, below are some additional properties and methods.

All components

property DialogHandle: HWnd ; Windows handle of the dialog where all controls are placed.

property Handle: HWnd ; Windows handle of the parent control where all controls (including both common dialog controls and your components) are placed. For all components except TFormOpenDialog and TFormSaveDialog it has the same value as DialogHandle.

property DialogShowing:boolean; True when dialog is being shown on the screen, false otherwise. This property is different from the Form's Visible property - it is true when "Execute" method is being called. DialogShowing is set to true before OnShow event and reset to false after OnClose event.

property Width:integer;

property Height:integer;Width and height of the area where common dialog controls are placed. You cannot change the default values: Windows needs that place for the common dialogs controls.

property Left:integer;

property Top:integer; Coordinates of the top-left corner of the area with common dialog controls. For TFormOpenDialog and TFormSaveDialog you can change these coordinates when dialog is not showing (DialogShowing=false) to change the position where controls are shown; for all other components Left and Top are always zero.

property OkButtonCaption:string;

property CancelButtonCaption:string;

property HelpButtonCaption:string; Captions of the corresponding buttons.

By default OkButtonCaption is "&Open" for TFormOpenDialog, "&Save" for TFormSaveDialog and "&Ok" for all other components.

Example: FormOpenDialog.OkButtonCaption:='&Delete';

property OnClose: TNotifyEvent; notification message is sent by an Open or Save common dialog when the user closes the dialog.

property OnShow: TNotifyEvent; notification message is sent by Open or Save common dialog box when the system has finished arranging the controls in the dialog box just before showing it on the screen.

TFormOpenDialog and TFormSaveDialog

property VisibleControls:TVisibleControlsSet;

 TVisibleControls = (ccOkButton,ccCancelButton,ccHelpButton,ccFolderCombo,

 ccFileNameEdit,ccFileTypeComboBox,ccReadOnlyCheckBox,

 ccLookInLabel,ccFileNameLabel,ccFileTypeLabel);

 TVisibleControlsSet= set of TVisibleControls;

Controls in the common dialog that are visible.

Example:

// hide the folder combo box:

with FormOpenDialog do VisibleControls:=VisibleControls-[ccFolderCombo];

property OnFolderChange: TNotifyEvent; notification message is sent by Open or Save common dialog box when a new folder is opened.

property OnSelectionChange: TNotifyEvent; notification message is sent by an Open or Save common dialog box when the selection changes in the list box that displays the contents of the currently opened folder or directory.

property OnTypeChange: TNotifyEvent; notification message is sent by an Open or Save common dialog box when the user selects a new file type from the file types combo box.

property OnFileOK: TCloseQueryEvent; notification message is sent by an Open or Save common dialog box when the user specifies a filename and clicks the OK button. Set CanClose function parameter to false to prevent dialog from closing.

property OnHelp : TNotifyEvent; notification message is sent by an Open or Save common dialog box when the user clicks the Help button.

property OnShareViolation: TNotifyEvent; notification message is sent by an Open or Save common dialog box when the user clicks the OK button and a network sharing violation occurs for the selected file.

 procedure ToolBarButtonClick(N:integer); simulate mouse click on an

"Up One Level","Create New Folder","List" or "Details" button respectively. Use with caution: it's undocumented, even though it is unlikely to behave differently in future versions of Windows. The procedure will work only when DialogShowing=true.

Example: If you want to make file list show files' details instead of a simple list by default, call the procedure with N=4 ("Details" button) in the OnShow event of the dialog. Remember that every time you close the dialog box and reopen it, Windows recreates common dialog controls and you'll need to call ToolBarButtonClick(4) again; naturally, OnShow() event is the best place to do so.

procedure ShowToolBar(Value:boolean); Show (Value=true) or hide (Value=false) Common Dialog's toolbar with "Up One Level","Create New Folder","List","Details" buttons. Undocumented too, see limitation above. I did not create a property like ToolBarVisible on purpose: if you need to hide the ToolBar, do it explicitly in the OnShow event by calling the procedure, rather than using default value of the property.

TFormSaveDialog

Component TFormSaveDialog is exactly the same as TFormOpenDialog, except that OkButtonCaption property defaults to "&Save", instead of "&Open".

TFormColorDialog

 property OnColorChange:TNotifyEvent; this event is fired when selected color in the dialog is changed;

TFormFontDialog

property SampleCaption:string; string shown in the "Sample" area of the font dialog box, default is 'AaBbYyZz';

property OnFontChange:TNotifyEvent; event is fired when any font properties are changed.

TFormPageSetupDialog

procedure RedrawPage; forces repaint of the sample page in the Page Setup Dialog.

property PaperSize: TPoint; Width (PaperSize.X) and Height (PaperSize.Y) of the paper measured in 1/1000 of an inch.

property MinimumMargins: TRect; minimum margins of the paper in 1/1000 of an inch.

property Margins: TRect; margins of the paper in 1/1000 of an inch.

property Options: TPageSetupOptions; TPageSetupOption = (poDefaultMinMargins, poDisableMargins, poDisableOrientation, poDisablePagePainting, poDisablePaper, poDisablePrinter, poNoWarning, poShowHelp);

property Measurements: TPSMeasurements; TPSMeasurements = (pmMillimeters, pmInches);

property OnPrinter: TOnPrinterClickEvent; TOnPrinterClickEvent = procedure(Sender:TObject; var ShowPrinters:boolean)of object; this event is fired when a user clicks on the "Printer..." button.Set ShowPrinters to false if you handled "Printer..." button click yourself by, for example, showing your own list of printers, if true, default printer list will be shown.

property OnPaintPage: TPSPaintPageEvent; TPSPaintPageEvent = function(Sender: TObject; PaintWhat: TPSPaintWhat; Canvas: TCanvas; Rect: TRect): boolean of object; event is fired when Page Setup Dialog need to redraw the sample page.

TPSPaintWhat = (pwFullPage, pwMinimumMargins, pwMargins, pwGreekText, pwEnvStamp, pwYAFullPage);

TFormPrinterSetupDialog

This component does not introduce any new properties or events different from Borlands' TPrinterSetupDialog.

TFormPrintCommDialog

This component does not introduce any new properties or events different from Borlands' TPrintDialog.

TFormFolderDialog

procedure EnableOK(const Value: Boolean); - Enable (Value=true) or disable (Value=false) the "Ok" button.

property DisplayName: String; - Read only; name of the folder selected by the user.

property SelectionPath: string ; - read/write; selected path

property Directory:string; - read/write; selected directory;

property SelectionPIDL: PItemIDList ; - read/write; pointer to the array of ITEMIDLIST structures used by the Windows shell.

property RootPIDL: PItemIDList ; - read only; pointer to the array of ITEMIDLIST structures used by the Windows shell.

property StatusText: string; - read/write; status text;

property Title:string ; - read/write; string that is displayed above the tree view control in the dialog box. This string can be used to specify instructions to the user.

property RootFolder: TShellFolder default sfoDesktopExpanded;

 TShellFolder = (sfoDesktopExpanded,sfoDesktop,sfoPrograms,sfoControlPanel,

 sfoPrinters,sfoPersonal,sfoFavorites,sfoStartup,sfoRecent,

 sfoSendto,sfoRecycleBin,sfoStartMenu,sfoDesktopDirectory,sfoMyComputer,

 sfoNetwork,sfoNetworkNeighborhood,sfoFonts,sfoTemplates,

 sfoCommonStartMenu, sfoCommonPrograms, sfoCommonStartup,

 sfoCommonDesktopDirectory, sfoAppData, sfoPrintHood);

 property Options: TFormFolderDialogOptions

 default [bfFileSysDirsOnly, bfStatusText, bfShowPathInStatusArea];

TFormFolderDialogOption = (

 bfFileSysDirsOnly, bfDontGoBelowDomain, bfStatusText,

 bfFileSysAncestors, bfBrowseForComputer, bfBrowseForPrinter,

 bfShowPathInStatusArea);

 TFormFolderDialogOptions = set of TFormFolderDialogOption;

property OnChange: TNotifyEvent ; - read/write; event fired every timer the selection is changed.

TFormChangeIconDialog

function ErrorCodeAsStr:string; - Error code returned as string (so you won't have to look up oledlg.pas for the error codes).

property ErrorCode:integer; - read only. Error code. If the dialog does not show up on the screen, this property is the first one to check.

property Metafile:TMetafile; - read/write. Current and final images, the icon is embedded inside the metafile.

property ClsId:TClsID; - read/write. The class to use to get the Default icon.

property Selection:TChangeIconSelect; - read/write. Specifies which radio item will be selected before the dialog is shown or the selection made by the user after the dialog is dismissed.

TChangeIconSelect = (cisDefault,cisCurrent,cisFromFile);

property ShowHelp:boolean; - read/write.Dialog box will display a Help button

property UseIconEXE:boolean; - read/write.Extracts the icon from the executable specified in the EXEName property, instead of retrieving it from the class. This is useful for OLE embedding or linking to non-OLE files.

property EXEName:string; - read/write.Executable to extract the default icon from. This member is ignored unless UseIconEXE is true and an attempt to retrieve the class icon from the specified CLSID fails.

TFormInsertObjectDialog

function ErrorCodeAsStr:string; - Error code returned as string (so you won't have to look up oledlg.pas for the error codes).

property ErrorCode:integer; - read only. Error code. If the dialog does not show up on the screen, this property is the first one to check.

property ClsID:TCLSID; - read only. CLSID for class of the object to be inserted. Filled on output.

property FileName:string; - read only .Points to the name of the file linked to or insert.

property ExcludeList:TList; - read only.A list of CLSIDs to exclude from listing. Each entry in the ExcludeList is a pointer to TCLSID.

property IID:TIID; - read/write. The identifier of the requested interface. If TFormInsertObjectDialog creates the object (iofCreateNewObject in Options), then it will return a pointer to this interface. This parameter is ignored if TFormInsertObjectDialog does not create the object.

property OleRender:integer; - read/write. The rendering option. If TFormInsertObjectDialog creates the object, then it selects the rendering option when it creates the object. This parameter is ignored if TFormInsertObjectDialog does not create the object.

property FormatEtc:TFormatEtc; - read/write. The desired format. If TFormInsertObjectDialog creates the object, then it selects the format when it creates the object. This parameter is ignored if TFormInsertObjectDialog does not create the object.

property IOLECLientSite:IOLEClientSite; - read/write;Points to the client site to be used for the object. This parameter is ignored if TFormInsertObjectDialog does not create the object.

property IStorage:IStorage; - read /write. Points to the storage to be used for the object This parameter is ignored if TFormInsertObjectDialog does not create the object.

property PObject:pointer; - read only. Points to the location where the pointer to the object is returned. This parameter is ignored if TFormInsertObjectDialog does not create the object.

property SC: SCode; - read only; The result of creation calls. This parameter is ignored if TFormInsertObjectDialog does not create the object.

property Metafile:TMetafile; - read only; Metafile containing the iconic aspect, if it wasn't placed in the object's cache.

property Options:TInsertObjectOptions; - read/write.

TInsertObjectOption =(iofShowHelp, iofCheckLink,iofCheckDisplayAsIcon,

 iofCreateNewObject,iofCreateFileObject,

 iofCreateLinkObject,iofDisableLink,

 iofVerifyServerExists,iofDisableDisplayAsIcon,

 iofHideChangeIcon,iofShowInsertControl);

property Selected:TIOSelectedOption; - read/write.

TIOSelectedOption = (iosCreateNew,iosCreateFromFile,iosCreateControl);

Known limitations

	Since unlike Delphi dialogs these components ARE true Windows dialogs, you cannot use Application.MessageBox() from within your form while the dialog is shown; instead use CreateMessageDialog, MessageDlg, MessageDlgPos, MessageDlgPosHelp, ShowMessage,ShowMessageFmt and ShowMessagePos defined in dialogs.pas.

	You cannot do anything that forces Delphi's Form to recreate itself, i.e change Form's border style and border icons while the dialog is being shown (DialogShowing=true): nothing bad will happen, the changes just won't show up.

	Do not change WindowState property (e.g. setting it to wsMinimized). Everything else is perfectly fine: change form's size, position (left, top that is), close it etc.

	Changing Filter property of the TFormOpenDialog and TFormSaveDialog while dialog is showing will not take effect until the dialog is closed and shown again by call to the Execute function. Changing Filters while dialog is shown would involve changing some undocumented properties of a Common Dialog, and I do not feel extremely comfortable doing it for a future compatibility reason, even though it is completely doable.	

Source code

	I feel pretty bad about not including the source code, but I have to put myself through the Grad School somehow :), so if you are interested in getting the source code:

	If you want it fast, you can get it at

 http://www.shareit.com/programs/100729.htm

		

OR (if you want to save me a few bucks but lose a couple days)

	send $20 check or money order to

	Dmitry Streblechenko

	Department of Physics and Astronomy, Box 1504

	Arizona State University

	Tempe, AZ 85287-1504, USA

	e-mail: dmitrys@asu.edu

	phone: (602)968-3971

	I will e-mail you the source code, or send it on a diskette if you prefer.

	I guess it's worth $20: you'll get a good example of interfacing VCL controls with anything else in the same window plus a few tips on doing things Borland discourages you from doing, like calling some class' protected methods from any other class. Fixing fatal Microsoft bugs is a story well known to all of us, so you'll see some of that stuff too.

	You may freely use these components for the evaluation purposes, if you are going to use any of the components in a commercial application, you must buy the source code.

	You may distribute this package intact without the source code (dsdialog.pas - if you have already received it from me). You cannot however distribute the source code or any portion of it without a written permission from me.

	I would greatly appreciate any comments, suggestions or bug reports sent to

	dmitrys@asu.edu

STANDARD DISCLAIMER

 	I DO NOT WARANTEE ANYTHING CONCERNING ANY OF THE FILES WHICH MAKE UP THIS PACKAGE. I ACCEPT NO RESPONSIBILITY FOR ANY LOSS OR DAMAGE OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, LOSSES OF A PHYSICAL, MENTAL, SOCIAL, FINANCIAL, MARITAL, OR OF WHATEVER NATURE, RESULTING FROM THE USE, OR THE PURPORTED USE, OF THIS PACKAGE OR ANY OF THE FILES IN THE PACKAGE FOR ANY PURPOSE WHATSOEVER. I DO NOT EVEN WARANTEE THAT THE FILES WILL NOT KILL YOU. USE THIS PACKAGE ENTIRELY AT YOUR OWN RISK, AND IF YOU SUPPLY IT TO YOUR CUSTOMERS, FRIENDS, FAMILY, ACQUAINTANCES, OR ENEMIES, DO IT ENTIRELY AT YOUR OWN RISK.

 	IF THESE TERMS ARE NOT ACCEPTABLE TO YOU, THEN PLEASE DELETE ALL THE FILES FROM YOUR DISKS IMMEDIATELY AND PERMANENTLY.

