TDBTreeView v1.51
User Manual
for Delphi 2, Delphi 3
SUmmary
Author�DDO Organisation��Model�� NOMFICHIER * FUSIONFORMAT �Dbtvda4e�, version � NUMREV * FUSIONFORMAT �4� (english)��Subject�� SUJET * FUSIONFORMAT �User Manual of the TDBTreeView VCL component, v1.51� ��Comments�� COMMENTAIRES * FUSIONFORMAT �This document describes the user manual of the TDBTreeView VCL component, in its version 1.51 under Delphi 2 and 3 : how to install it, how to use it, ...� ��Index�1��Last Update��DATEENREG \@ "j MMMM aa"�4 July 97�, by DDO Organisation��Pages #��nbpages �22���
�
Table of Contents
� TM \o "1-3" �1. TABLE OF CONTENTS	� BOUTONATTEINDRE _Toc392693171 � RENVOIPAGE _Toc392693171 �
2
��
2. WHAT IS TDBTREEVIEW	� BOUTONATTEINDRE _Toc392693172 � RENVOIPAGE _Toc392693172 �
2
��
3. TDBTREEVIEW INSTALL	� BOUTONATTEINDRE _Toc392693173 � RENVOIPAGE _Toc392693173 �
3
��
3.1. Preparation for Installation under Delphi 2, Delphi 3	� BOUTONATTEINDRE _Toc392693174 � RENVOIPAGE _Toc392693174 �
3
��
3.2. Installation under Delphi 2	� BOUTONATTEINDRE _Toc392693175 � RENVOIPAGE _Toc392693175 �
3
��
3.3. Installation under Delphi 3	� BOUTONATTEINDRE _Toc392693176 � RENVOIPAGE _Toc392693176 �
3
��
4. TDBTREEVIEW DELPHI EXAMPLES	� BOUTONATTEINDRE _Toc392693177 � RENVOIPAGE _Toc392693177 �
3
��
4.1. Introduction	� BOUTONATTEINDRE _Toc392693178 � RENVOIPAGE _Toc392693178 �
3
��
4.2. TDBTreeView Example #1	� BOUTONATTEINDRE _Toc392693179 � RENVOIPAGE _Toc392693179 �
4
��
4.3. TDBTreeView Example #2	� BOUTONATTEINDRE _Toc392693180 � RENVOIPAGE _Toc392693180 �
6
��
4.4. Updating Database	� BOUTONATTEINDRE _Toc392693181 � RENVOIPAGE _Toc392693181 �
6
��
4.4.1. Introduction	� BOUTONATTEINDRE _Toc392693182 � RENVOIPAGE _Toc392693182 �
6
��
4.4.2. Deleting nodes, in Tdbtreeview example #2	� BOUTONATTEINDRE _Toc392693183 � RENVOIPAGE _Toc392693183 �
7
��
4.4.3. Moving nodes in TdbTreeView Example #2	� BOUTONATTEINDRE _Toc392693184 � RENVOIPAGE _Toc392693184 �
9
��
4.4.4. Copying nodes in TdbTreeView Example #2	� BOUTONATTEINDRE _Toc392693185 � RENVOIPAGE _Toc392693185 �
10
��
5. TDBTREEVIEW PROPERTIES AND EVENTS	� BOUTONATTEINDRE _Toc392693186 � RENVOIPAGE _Toc392693186 �
11
��
5.1. What a TDBTreeView is made of ?	� BOUTONATTEINDRE _Toc392693187 � RENVOIPAGE _Toc392693187 �
11
��
5.2. Properties	� BOUTONATTEINDRE _Toc392693188 � RENVOIPAGE _Toc392693188 �
11
��
5.3. Events	� BOUTONATTEINDRE _Toc392693189 � RENVOIPAGE _Toc392693189 �
13
��
5.4. Processes	� BOUTONATTEINDRE _Toc392693190 � RENVOIPAGE _Toc392693190 �
15
��
5.4.1. Delete Process	� BOUTONATTEINDRE _Toc392693191 � RENVOIPAGE _Toc392693191 �
15
��
5.4.2. Move Process	� BOUTONATTEINDRE _Toc392693192 � RENVOIPAGE _Toc392693192 �
16
��
5.4.3. Copy Process	� BOUTONATTEINDRE _Toc392693193 � RENVOIPAGE _Toc392693193 �
17
��
6. PROTECTED/PUBLIC TDBTREEVIEW METHODS	� BOUTONATTEINDRE _Toc392693194 � RENVOIPAGE _Toc392693194 �
18
��
7. HOW TO ... ? WHY ... ?	� BOUTONATTEINDRE _Toc392693195 � RENVOIPAGE _Toc392693195 �
19
��
7.1. How to specify several tables or queries in a TDBTreeView ?	� BOUTONATTEINDRE _Toc392693196 � RENVOIPAGE _Toc392693196 �
19
��
7.2. How to specify only a subset of fields for each table involved in a TDBTreeView ?	� BOUTONATTEINDRE _Toc392693197 � RENVOIPAGE _Toc392693197 �
19
��
7.3. How to have a multi-select TDBTreeView ?	� BOUTONATTEINDRE _Toc392693198 � RENVOIPAGE _Toc392693198 �
19
��
7.4. How to specify images and stateimages ?	� BOUTONATTEINDRE _Toc392693199 � RENVOIPAGE _Toc392693199 �
19
��
7.5. How to have an updatable TDBTreeView ?	� BOUTONATTEINDRE _Toc392693200 � RENVOIPAGE _Toc392693200 �
19
��
7.6. How to customize an updatable TDBTreeView for a TQuery ?	� BOUTONATTEINDRE _Toc392693201 � RENVOIPAGE _Toc392693201 �
19
��
7.7. How to change mouse icon during long operations ?	� BOUTONATTEINDRE _Toc392693202 � RENVOIPAGE _Toc392693202 �
21
��
7.8. How to intercept DB errors during updates on TDBTreeView ?	� BOUTONATTEINDRE _Toc392693203 � RENVOIPAGE _Toc392693203 �
21
��
7.9. How to use Popup Menu with a TDBTreeView ?	� BOUTONATTEINDRE _Toc392693204 � RENVOIPAGE _Toc392693204 �
21
��
7.10. How to use drag and drop with TDBTreeView ?	� BOUTONATTEINDRE _Toc392693205 � RENVOIPAGE _Toc392693205 �
22
��
7.11. How to know how many nodes have been moved, copied, ... ?	� BOUTONATTEINDRE _Toc392693206 � RENVOIPAGE _Toc392693206 �
22
��
7.12. Why have I « Access violation ... » or « Database error ... » ?	� BOUTONATTEINDRE _Toc392693207 � RENVOIPAGE _Toc392693207 �
23
��
8. WHAT WILL BE NEXT VERSIONS ? (MAY BE...)	� BOUTONATTEINDRE _Toc392693208 � RENVOIPAGE _Toc392693208 �
23
��
9. REGISTRATION, CONTACT, TECHNICAL SUPPORT	� BOUTONATTEINDRE _Toc392693209 � RENVOIPAGE _Toc392693209 �
23
��
9.1. Registration	� BOUTONATTEINDRE _Toc392693210 � RENVOIPAGE _Toc392693210 �
23
��
9.2. Contact	� BOUTONATTEINDRE _Toc392693211 � RENVOIPAGE _Toc392693211 �
23
��
9.3. Technical Support	� BOUTONATTEINDRE _Toc392693212 � RENVOIPAGE _Toc392693212 �
24
��
10. DISCLAIMER	� BOUTONATTEINDRE _Toc392693213 � RENVOIPAGE _Toc392693213 �
24
��
�What is TDBTreeView
TDBTreeView is a 32 bits VCL component, which inherits directly from TTreeView. It can be described by the two following main ideas :

each level of the tree is a Table/Query,
each node of one level is a record in the Table/Query.

But also, TDBTreeView has a lot of features :

no limitations on number of levels, except when memory lacks,
TTable or TQuery use,
mono-select or multi-select,
update capabilities : user can delete, move or copy a node, and so, a row in a table,
full integration of drag and drop and popup menu

The best way to understand TDBTreeView is to install the component and to load and run the two examples.
TDBTReeView Install
Preparation for Installation under Delphi 2, Delphi 3
You must have one of the following files :

DBTV151R.ZIP, for the TDBTreeView Delphi 2 and 3 registered package,
DBTV151
S
.ZIP, for the TDBTreeView Delphi 2 demonstration package,
DBTV151
U
.ZIP, for the TDBTreeView Delphi 3 demonstration package.

Unzip your file in a directory of your choice. This archive file contains a lot of files.
Installation under Delphi 2
If you have the unregistered version, among them, you’ll find a DBTREE.DCU. Install it as a new component in Delphi (Component/Install...). By default, the TDBTreeView component installs itself in the ‘DDO Org.’ group of the Components Panel. You may move it into an other group with the Delphi Component Menu.

If you have the registered version, you’ll find the TDBTreeView sources (DBTREE.PAS). You install the component with the DBTREE.PAS.

Nothing else !
Installation under Delphi 3
Among files, you’ll find a PKGDBTV.DPL. This file is a package which must be installed in Delphi 3 as a design package. It will automatically import DBTREE unit, and also will install it in ‘DDO Org.’ Group.

You also may install DBTREE with the unit sources : DBTREE.PAS.
TDBTreeView Delphi Examples
Introduction
The two TDBTreeView DELPHI examples are stored in the following project files :

DBTVSAMP.DPR, for the first one,
DBT2SAMP.DPR, for the second one.

You must load the project file, compile it and run it to see the corresponding example.

Nota : These examples are written Delphi 2 PASCAL language. They can be used under Delphi 2 or Delphi 3 without any restrictions.
TDBTreeView Example #1
The first example (DBTVSAMP.DPR) shows a TDBTreeView used with the four standard Borland Demo Tables (DBDEMOS alias) :

CUSTOMER.DB (Customers table),
ORDERS.DB (Orders table),
ITEMS.DB (ordered Items table),
PARTS.DB (Part Numbers table).

All of these tables are linked by the following relations :

Each Order is made for a Customer : CUSTOMER.CustNo = ORDERS.CustNo,
Each ordered Items is included in an Order : ORDERS.OrderNo = ITEMS.OrderNo,
Each Item has a Part Number : ITEMS.PartNo = PARTS.PartNo.

All of these fields are primary or secondary keys of their corresponding table.

The following example, shows a hierarchical view of these relations : it displays all customers, for each one, all orders, for each order, all Items, for each item, its P/N. Each level represents a table, each node a row. You may expand a node, and so see the subnodes : expanding a customer will display its orders, expanding an order will display its items.

Each node is represented by :

an icon : this icon is always the same for one level, so this icon is characteristic of a level and not of a node. It is an image coming from Images property. Index 0 is for root level, Index 1 for level 1, and so on,
a state icon : this icon is used only if you use the multi-select capability (see SelectStrategy property),
a text : the text is the concatenation of the display value of the row fields. You are not obliged to select all fields of a table : you may choose the fields you want, in the order you want,
a BookMark : this information is not visible. Each node knows about the corresponding table row.

In desin mode, you will notice that CUSTOMER.DB, ORDERS.DB and PARTS.DB are used as TTable, and ITEMS.DB as TQuery.

�

What can you do with this example ?

you may expand/collapse each node. When you select one node, the panel on the right side will switch to the corresponding row. How ? see the DBTreeView1 OnChange event,
you may verify the relations between nodes by clicking the Verify button,
when a lot of nodes are expanded, you may scroll up or down, left or right in the TDBTreeView panel, without using the scroll bars. How ? it is automatic, depending on AutoScroll property,
you may select a node, drag it and drop it onto the Drop Zone button. A window will display its text. How ? see the OnDragDrop and OnDragOver events of the Drop Zone button. In this example, you cannot drag and drop a node on an other node. Be patient, and rendez-vous on next example,
you may change the text of nodes. How ? in design mode, go into the fields editor of any table or query, change the Visible property of the fields you do not want to see, compile and re-run the example.
you may have multi-select. How ? in design mode, change the SelectStrategy property to tssMultiSelect. Compile an run the example. After having expanded some nodes, select them by clicking on the state icon, drag and drop them on the Drop Zone button :

�
TDBTreeView Example #2
The second example (DBT2SAMP.DPR) shows a TDBTreeView used with three specific Tables (which are stored in the current directory) :
LEVEL1.DB (level 1 items table),
LEVEL2.DB (level 2 items table),
LEVEL3.DB (level 3 items table).

All of these tables are linked by the following relations :
Each LEVEL 2 item is included in one LEVEL 1 item : LEVEL2.L1_REF = LEVEL1.L1_ID,
Each LEVEL 3 item is included in one LEVEL 2 item : LEVEL3.L1_REF = LEVEL2.L1_REF and LEVEL3.L2_REF = LEVEL2.L2_ID.

LEVEL1.DB and LEVEL2.DB are used as TTable, LEVEL3.DB as TQuery. Note that all actions against LEVEL3.DB (delete, copy or move) will be preceeded by a window displaying the SQL order to perform.

�
What can you do with this example ?

you may delete one or more nodes. How ? see below ‘Deleting nodes’ paragraph.
you may move one or more nodes, from their parent to an other parent. How ? see below ‘Moving nodes’ paragraph,
you may copy one or more nodes. How ? see below ‘Copying nodes’ paragraph,
you may start again from the same table contents, by clicking on Rebuild Button.

Please, take care : this is only an example. For instance, when deleting or moving or copying a node, no referential integrity is performed. In this example, deleting a node/row from level 2 does not also delete subnodes/rows in table, which are depending on. Here-above, deleting Wheels in LEVEL2.DB does not delete Front Wheel and Rear Wheel in LEVEL3.DB. You have to perform it programmatically.
Updating Database
Introduction
User may update the underlaying tables/queries by :

deleting one or more nodes,
moving one or more nodes from one parent node to an other parent node,
copying one or more nodes from one parent node to an other parent node.

In a mono-select TDBTreeView (SelectStrategy=tssOneSelect), only the current (i-e Selected) node may be deleted, moved or copied. In a multi-select TDBTreeView, all selected nodes (i-e in SelectedNodes list) are implied.

The following situations are allowed :

� INCORPORER Visio.Drawing.3 ���

In the first case, you may select one or more nodes (A.1 and A.2), from the same parent node (A), and move/copy them under an other parent (B).

In the second case, you may select one or more nodes (A) and move/copy their children (here A.1 to A.3) under an other parent (B).

Such actions can be performed by :

drag and drop : you drag all selected nodes and drop them on an other node,
popup menu : you choose Cut or Copy option (Cut=Move, Copy=Copy), select an other node, and choose Paste.

Remember you can move/copy nodes from one level to the same level or to the immediate upper level.

Deleting nodes, in Tdbtreeview example #2
Two ways to delete nodes : by drap and drop, or by popup menu.
By drag and drop
� INCORPORER Word.Picture.6 ���
(Before

After (
�
Select one or more nodes by checking their state icon. You can only select nodes from the same level. Drag all nodes to the Delete button and drop them. Nodes and table rows are deleted, tree view is refreshed. For example, open Blue Bicycle, drag Saddle and drop it on Delete button. Blue Bicycle has no more Saddle :

You may notice if you select only one node for a drag and drop that it is automatically checked. This is due to the SelectBehaviour property (tsbOneIsMany).
By Popup Menu
Select one or more nodes by checking their state icon, or by right-clicking and choose ‘Add/Remove Sel’ option. Then, right-click and choose ‘Delete Sel’. Nodes are deleted, tree view is refreshed.
Underlaying action
Selected nodes are retrieved in associated Table/Query and deleted.
�
Moving nodes in TdbTreeView Example #2
Two ways to move nodes : by drap and drop, or by popup menu.
By Drag and Drop
(Before

After (
�
�
Select one or more nodes by checking their state icon. You can only select nodes from the same level. Drag all nodes to an other parent and drop them. Nodes and table rows are moved, tree view is refreshed. For example, open Blue Bicycle, open Frame, drag Crank Gear and drop it on Saddle node. Crank Gear has moved from Frame to Saddle :

By Popup Menu
Select one or more nodes by checking their state icon, or by right-clicking and choose ‘Add/Remove Sel’ option. Then, right-click and choose ‘Cut Sel’. Select an other node, sibling of their parent (a node of the previous level of the selected nodes). Right-click and choose ‘Paste Sel’. Nodes are moved from their parent to new parent, tree view is refreshed.
Underlaying action
Selected nodes are retrieved in associated Table/Query, and for each of them, an update is performed. In the above example, « Crank Gear » has the following values : L1_REF=1, L2_REF=1, L3_REF=2. Update changes it to : L1_REF=1, L2_REF=3, L3_REF is unchanged.
�
Copying nodes in TdbTreeView Example #2
Two ways to copy nodes : by drap and drop, or by popup menu.
By drag and drop
�
Select one or more nodes by checking their state icon. You can only select nodes from the same level. Hold down the Ctrl key and drag all nodes to an other parent and drop them. Nodes and table rows are copied, tree view is refreshed. For example, open Black Hammer, open Red Car, open Car Wheels, select Left Front Wheel and Right Front Wheel, hold down Ctrl key, drag nodes and drop them on Hammer handle node :
(Before

After(
�

You will notice that new nodes have a Description field ‘Copy of...’. This is only due to custom event. See ‘OnTreeNodeAction’ event.
By Popup Menu
Select one or more nodes by checking their state icon, or by right-clicking and choose ‘Add/Remove Sel’ option. Then, right-click and choose ‘Copy Sel’. Select an other node, sibling of their parent (a node of the previous level of the selected nodes). Right-click and choose ‘Paste Sel’. Nodes are copied to new parent, tree view is refreshed.
Underlaying action
Selected nodes are retrieved in associated Table/Query, and for each of them, an insert is performed, with new values coming from the MASTERFIELD fields (i-e keyed fields involved in the link with the upper level) and old values coming from the other fields. In the above example, « Right Front Wheel » has the following values : L1_REF=3, L2_REF=6, L3_REF=6. An insert has been performed with : L1_REF=2, L2_REF=4, L3_REF=6 (L1_REF and L2_REF values coming from « Hammer handle » row).

�
TDBTreeView properties and events

What a TDBTreeView is made of ?
A TDBTreeView inherits from TTreeView. It has a lot of new features, detailed in the following paragraphs.

The most important things are :

the Items property is now populating not with TTreeNode, but with TDBTreeNode. It is only populated when expanding/collapsing a node. Expand a node in TDBTreeView will create as many subnodes as parent table row has children in the detail table. Collapse a node will destroy subnodes. First consequence is : please, do not interfere yourself with Items property,
a TDBTreeNode inherits from TTreeNode. The following chart displays new properties and new methods :

Name�Nature�Description��BookMark�property�a TBookMark to the current associated row��DataSource�property�points to the TDatasource associated to Node.Level��Collapsev2�method�to use instead of Collapse��Expandv2�method�to use instead of Expand��Refresh�method�performs a Collapsev2+Expandv2��
As we cannot override Collapse and Expand methods, the standard TTreeView.FullCollapse and TTreeView.FullExpand cannot be used. Use TDBTreeView.FullCollapsev2 and TDBTreeView.FullExpandv2 instead.
Properties
Status : RW for a read and write property, RO for a read-only property. All RW properties are published, all RO are public,
Default value : value of the property when creating a TDBTreeView.

Property Name�Status�Description�Values�Default Value��ActionInProgress�RO�Action in progress during a cut/paste or a copy/paste�Currently one of these three values (see AllowedActions for meanings) :
tvpNoAction : we are not in a cut/paste or copy/paste action
tvpCutSelect : a cut/paste action has begun
tvpCopySelect : a copy/paste action has begun�tvpNoAction��AllowedActions�RO�Set of currently available actions. Use it to validate/unvalidate popupmenu options.�Set of TDBTreeViewActions values :

tvpNoAction : no action required. Only used for ActionInProgress. AllowedActions will never contain this value,
tvpExpandNode : the current node (=Selected) may be expanded,
tvpCollapseNode : the current node (=Selected) may be collapsed,
tvpDeleteSelect : the SelectedNodes list may be deleted in DB tables,
tvpCutSelect : the SelectedNodes list may be moved to an other parent node,
tvpCopySelect : the SelectedNodes list may be copied to an other parent node,
tvpPasteSelect : the ActionInProgress may be closed by a paste,
tvpChangeSelect : the current node (=selected) may have its status changed (node will become unchecked if checked, and vice-versa),
tvpClearSelect : the SelectedNodes list is cleared,
tvpRefreshSelect : the SelectedNodes list is refreshed, i-e, each node is refreshed,
tvpInsertNew : a new node may be inserted (no action are performed by TDBTreeView on such event).
�[]��AutoScroll�RW�Control of auto-scrolling when nodes are hidden�True : a mouse move near any side of the tree view scrolls the tree.
False : no scroll�True��DisplayStrategy�RW�Control of Table Fields used for display�ndsOnVisible : each permanent or non-permanent field involved in a TTable or Tquery, which has its Visible property set to True, is used on display
ndsOnTag : each permanent or non-permanent field involved in a TTable or TQuery, which has its Tag property set to a non-zero value, is used on display�ndsOnVisible��InsertStrategy�RW�Authorizes or not a tree to be modified�tisNoInsert : the tree cannot be modified, i-e, move, copy or delete nodes are not authorized,
tisInsert : the tree can be modified, i-e, move, copy or delete nodes are authorized�tisNoInsert��LastDataSource�RW�Last datasource needed for the master-detail link list�Any TDataSource�Nil��NbCopied�RO�Number of nodes copied on last operation��0��NbDeleted�RO�Number of nodes deleted on last operation��0��NbInError�RO�Number of nodes in error on last operation��0��NbLevels�RO�Total number of levels of the tree�1 for a one-level tree, 2 for two-levels tree. Root level does not count.�0��NbMoved�RO�Number of nodes moved on last operation��0��QueryControl�RW�Control of query use�True : during OnAskQuery event, if you do not return a Table substitute name, an error is raised.
False : you may avoid to give a Table substitute name in OnAskQuery event ; in such case, you control your queries during each OnTreeNodeAction iteration.�True��RootText�RW�Text displayed on level 0, i-e text of the root node�any text�(unregistered) for the unregistered version
Root for the registered version��SelectedNodes�RO�List of currently selected nodes�Tlist of TDBTreeNodes. If SelectStrategy is ‘tssOneSelect’, then SelectedNodes = Selected.�Empty list��SelectBehaviour�RW�When multi-selecting, and when drag&drop’ing, determines if one node, not checked, may be or may not be a checked one.�tsbOneIsNotMany : a selected but not checked node cannot be dragged,
tsbOneIsMany : a selected but not checked node can be dragged. During a drag & drop, and just after having moved the mouse, the selected node is checked.�tsbOneIsNotMany��SelectStrategy�RW�Mono or multi-select. This property is an enumerated property : tssOneSelect is for mono-selection capability, all other values for multi-selection.�tssOneSelect : only one node may be selected. StateImages property is not used
tssMultiSelect : all nodes, on any level, may be selected, StateImages[1] contains the unchecked icon, StateImages[2] the checked icon,
tssMultiSelectOnTag : all nodes, on level corresponding to a TTable/TQuery with a Tag property set to a non-zero value, may be selected,
tssMultiSelectOnLast : all nodes of the last level may be selected,
tssMultiSelectOnOneLevel : the first node to be selected determines the only authorized level.�tssOneSelect��SeparatorString�RW�String used to separate each field display string on a row display�any string value�‘ ‘ (<one space>)��
Events
Event Name�Description�Syntax and Parameters��OnAskQuery�Event fired when informations are needed during a move/copy/delete on a TQuery. This procedure is intended to replace the TQuery by an updatable TTable. Informations needed are : database name (often blank), table name, and master fields names.�Procedure(
Sender : TObject;
Const Level : Integer;
Var DatabaseName : String;
Var TableName : TFileName;
Var MasterFields : String) of object;

Sender : the TDBTreeView itself,
Level : 1 for informations asked on first level, 2 on second level, ...
DataBase : a string representing a database alias,
TableName : a string representing a table name and eventually its path,
MasterFields : a string representing the master fields of the table, i-e the fields involved in the master-detail link. ��OnFireAction�Event fired at start and end of each expand/collapse/move/copy/delete request�Procedure(
Sender : Tobject;
Const Action : TDBTreeViewAction;
Const BeginPhase : Boolean) of object;

Sender : the TDBTreeView itself,
Action : tvpExpandNode, tvpCollapseNode, tvpDeleteSelect, tvpCutSelect, or tvpCopySelect,
BeginPhase : True at start of action, False at end of action
��OnTreeDBError�Event fired when an error is encountered during a move/copy/delete�Procedure(
Sender : TObject;
Const E : EDataBaseError;
Const NodeAt : TDBTreeNode;
Const Table : TDataSet;
Const Action : TDBTreeViewAction;
Var ErrAction : TDataAction) of object;

Sender : the TDBTreeView itself,
E : the EDatabaseError which has raised an error,
NodeAt : the node being processed,
Table : the TTable being processed,
Action : tvpDeleteSelect, tvpCutSelect, or tvpCopySelect,
ErrAction : daFail or daAbort,
��OnTreeNodeAction�Event fired on each node involved in a move/copy/delete�Procedure(
Sender : Tobject;
Const NodeFrom : TDBTreeNode;
Const NodeAt : TDBTreeNode;
Const TableFrom : TDataSet;
Const TableAt : TDataSet;
Const Action : TDBTreeViewAction;
Var Continue : Boolean) of object;

Sender : the TDBTreeView itself,
NodeFrom : the node being deleted, copied or moved,
NodeAt : the destination parent node,
TableFrom : the NodeFrom dataset, currently positionned on NodeFrom,
TableAt : the NodeAt dataset, currently positionned on NodeAt
Action : tvpDeleteSelect, tvpCutSelect, or tvpCopySelect,
Continue : True : Action on node is performed by TDBTreeView, False : action is skipped��OnTreeViewAction�Event fired at the beginning of a move/copy/delete request, to eventually cancel it.�Procedure(
Sender : TObject;
NodeAt : TDBTreeNode;
Const Action : TDBTreeViewAction;
Var Continue : Boolean) of object;

Sender : the TDBTreeView itself,
NodeAt : the destination parent node,
Action : tvpDeleteSelect, tvpCutSelect, or tvpCopySelect,
Continue : True : the whole action is performed by TDBTreeView, False : whole action is skipped ���
Processes
The following charts describe all actions performed during a move/copy/delete request, and the events involved in.
Delete Process
� INCORPORER ShapewareVISIO20 ���
�
Move Process
� INCORPORER ShapewareVISIO20 ���
�
Copy Process
� INCORPORER ShapewareVISIO20 ���

�
Protected/Public TDBTreeView methods
Method Name�Status�Description�Syntax and Parameters��Build_Collapse�protected�Collapse a node, by deleting its children and their associated informations (children are TDBTreeNode, not TTreeNode).�Procedure Build_Collapse(Node : TCTreeNode); dynamic;��Build_DisplayString�protected�Build the text associated to each node, by concatenation of field display values.�Function Build_DisplayString(DataSet : TDataSet) : String; dynamic;��Build_Expand�protected�Expand a node, by scanning the TTable/TQuery of the next level, and by creating one TDBTreeNode for each row found.�Procedure Build_Expand(Node : TCTreeNode); dynamic;
��Copy�public�Copy the selected node(s). This procedure copies the ‘SelectedNodes’ nodes under a new parent : NodeAt.�Procedure Copy(NodeAt : TDBTreeNode);
��CreateNode�protected�Override the standard method, to create a TDBTreeNode instead of a TTreeNode.�Function CreateNode : TCTreeNode; override;��Delete�public�Delete the current node(s). If DBTreeView is mono-select, this procedure deletes the ‘Selected’ node, else, in multi-select, this procedure delete all the ‘SelectedNodes’ nodes.�Procedure Delete;��Execute_Action�public�Launches an action, as a result of a popupmenu, on a NodeAt.�Procedure Execute_Action(
NodeAt : TDBTreeNode;
Action : TDBTreeViewAction);
��Execute_PopupMenu�public�Launches an action, as a result of a popupmenu. Like Execute_Action, but first parameter (NodeAt) is get as the node designed by mouse position.�Procedure Execute_PopupMenu (Action : TDBTreeViewAction);
��Is_LevelToCheck�protected�Determine if a level may or may not have check boxes, depending on SelectStrategy.�Function Is_LevelToCheck (Node : TDBTreeNode) : Boolean;��Is_NodeToCheck�protected�Determine if a node may or may not be checked, depending on SelectStrategy.�Function Is_NodeToCheck (Node : TDBTreeNode) : Boolean;��Move�public�Move the selected node(s). This procedure moves the ‘SelectedNodes’ nodes to a new parent : NodeAt.�Procedure Move(NodeAt : TDBTreeNode);
��Set_ImageIndexes�protected�Set the node properties such as ImageIndex, StateIndex, ...�Procedure Set_ImageIndexes(
Node : TCTreeNode;
Phase : TTreeNodePhase); dynamic;��Set_HasChildren�protected��Procedure Set_HasChildren(
Node : TCTreeNode;
Phase : TTreeNodePhase); dynamic;��Synchronize_On�public�Move DB position to the corresponding bookmark associated to Node.�Procedure Synchronize_On(Node : TDBTreeNode);���
How To ... ? Why ... ?
How to specify several tables or queries in a TDBTreeView ?
drop on your form as many TTable or TQuery as you need,
connect them by their MasterSource property (for TTable) by by their DataSource property (for TQuery). In this last case, don’t forget to describe correct parameters in the SQL text, and in the Parameters list,
set the LastDatasource property of TDBTreeView to the LAST datasource involved, not the FIRST one.
How to specify only a subset of fields for each table involved in a TDBTreeView ?
for each table, right-click on the TTable or TQuery icon, go to the fields editor,
create permanent fields on the table,
either : for each field you want, set its Visible property to TRUE, for each field you do not want, set its Visible property to FALSE, and set the DisplayStrategy property of TDBTreeView to ndsOnVisible,
or : for each field you want, set its Tag property to 1 (or any other non-zero value), for each field you do not want, set its Tag property to 0, and set the DisplayStrategy property of TDBTreeView to ndsOnTag,
How to have a multi-select TDBTreeView ?
just set SelectStrategy on an other value than tssOneSelect.
How to specify images and stateimages ?
if you does not want a multi-select TDBTreeView, you do not need to set StateImages property. Images property must be an array of icons (a TImageList), item #0 being the 0 level (root level), item #1, being the first level, and so on,
if you want a multi-select TDBTreeView, set StateImages to an array of icons (a TImageList), item #0 being not used (it is a bug of StateImages), item #1 being the icon of the non-checked nodes, item #2 being the icon of the checked nodes. You may freely use the check*.ico delivered with TDBTreeView samples.
How to have an updatable TDBTreeView ?
just set the InsertStrategy to tisInsert.
How to customize an updatable TDBTreeView for a TQuery ?
for displaying nodes, nothing to do. For updating, two ways :
either : you may substitute your TQuery for updates by a TTable. You have to give to TDBTreeView the Database name, the TTable name, the Master Fields names. This can be done with the OnAskQuery event :

procedure Tmain.DBTreeView1AskQuery(Sender: TObject; const Level: Integer;
 var DatabaseName, TableName, MasterFields: string);
begin
 If Sender is TDBTreeView Then Begin
 If Level = 3 Then Begin
 DataBaseName := '';
 TableName := 'LEVEL3.DB';
 MasterFields := 'L1_REF;L2_REF';
 End;
 End;
end;

in this example, we inform TDBTreeView that LEVEL3.DB is a good working table for the level 3. And we give it the key fields of the level 3 : L1_REF and L2_REF needed to compare with the primary keys of the table involved in level 2.

or : you write SQL orders with OnTreeNodeAction event for each case : delete, move, copy. Delete nodes will become a DELETE SQL order, move will be an UPDATE order (on primary key fields), copy will be an INSERT SQL order. Except for DELETE, you have to retrieve old values and give new values (UPDATE fields=<new_values> WHERE keys=<old_values>, INSERT into table <new_values> and/or <old_values>). Take care in this case that OnAskQuery will normally ask you a working table for this level. You have to set QueryControl to False to avoid error messages.

procedure Tmain.DBTreeView1TreeNodeAction(Sender: TObject;
 const NodeFrom : TDBTreeNode; const NodeAt : TDBTreeNode;
 const TableFrom : TDataSet; const TableAt : TDataSet;
 const Action: TDBTreeViewAction; var Continue: Boolean);
Var
 Query : TQuery;
 S : String;
begin
 If (NodeFrom.Level = 3) Then Begin
 With NodeFrom.DataSource.DataSet,
 Sender as TDBTreeView Do Begin
 Query := TQuery.Create(Sender as TComponent);

 If Action = tvpCopySelect Then
 S := FieldByName('L3_ID').AsString +
 ', "Copy of ' +
 FieldByName('L3_DESC').AsString
 Else
 S := 'L1_REF=' + FieldByName('L1_REF').AsString + ' and ' +
 'L2_REF=' + FieldByName('L2_REF').AsString + ' and ' +
 'L3_ID=' + FieldByName('L3_ID').AsString;

 Case Action Of
 tvpDeleteSelect : Begin
 Query.SQL.Add('delete from "LEVEL3.DB" where ' + S);
 End;
 tvpCutSelect : Begin
 Synchronize_On(NodeAt);
 Query.SQL.Add('update "LEVEL3.DB" set ' + 'L1_REF=' +
 NodeAt.DataSource.DataSet.FieldByName('L1_REF').AsString + ', ' +
 'L2_REF=' +
 NodeAt.DataSource.DataSet.FieldByName('L2_ID').AsString +
 ' where ' + S);
 End;
 tvpCopySelect : Begin
 Synchronize_On(NodeAt);
 Query.SQL.Add('insert into "LEVEL3.DB" ‘ +
 ‘(L1_REF, L2_REF, L3_ID, L3_DESC) values(' +
 NodeAt.DataSource.DataSet.FieldByName('L1_REF').AsString + ', ' +
 NodeAt.DataSource.DataSet.FieldByName('L2_ID').AsString + ', ' +
 S + '")');
 End;
 End;
 End;
 ShowMessage('The following SQL instruction will now be executed :' +
 #13#10#10 +
 Query.SQL[0]);

 Query.ExecSQL;

 Continue := False;
 End;
end;

Note, in the above example, that :

values coming from NodeFrom (« old values ») or NodeAt (« new values ») are retrieved by the following notation :
<TDBTreeNode>.DataSource.DataSet.Fields[] or FieldByName(),

Note again that you may write a better code by using a TUpdateSQL object.
How to change mouse icon during long operations ?
during expand, collapse, delete, copy, move, use OnFireAction event. On BeginPhase=TRUE, change icon, on BeginPhase=FALSE, reset icon :

Procedure Tmain.DBTreeView1FireAction(Sender: TObject;
 const Action: TDBTreeViewAction; const BeginPhase: Boolean);
begin
 If BeginPhase Then
 Screen.Cursor := crHourGlass
 Else
 Screen.Cursor := crDefault;
end;
How to intercept DB errors during updates on TDBTreeView ?
use OnTreeDBError event. True DB errors are managed (those coming from DB manipulations : inserts, updates or deletes, and those coming from TDBTreeView) (example in PASCAL) :

procedure Tmain.DBTreeView1TreeDBError(Sender: TObject;
 const E: EDatabaseError; const NodeAt: TDBTreeNode;
 const Table: TDataSet; const Action: TDBTreeViewAction;
 var ErrAction: TDataAction);
begin
 With (Sender as TDBTreeView) Do Begin
 Case MessageDlg(.../... +
 'You may [Abort] the program, or [Ignore] ‘ +
 ‘ to continue.',
 mtError, [mbAbort, mbIgnore], 0) of
 mrAbort : ErrAction := daFail;
 mrIgnore : ErrAction := daAbort;
 End;

 End;
end;

TDBTreeView has its own errors :

EDBTVWorkingTableError = Class(EDataBaseError);
EDBTVIndexNeededError = Class(EDataBaseError);
EDBTVMasterFieldsError = Class(EDataBaseError);

EDBTVWorkingTableError is raised when OnAskQuery has given an invalid Table name,
EDBTVMasterFieldsError when OnAskQuery has given an empty masterfields string,
EDBTVIndexNeededError when no primary index has been found on table given by OnAskQuery.
How to use Popup Menu with a TDBTreeView ?
create a popup menu and link it to TDBTreeView (PopupMenu property),
on its OnPopup event, test authorized actions, by reading AllowedActions property (example in PASCAL):

procedure Tmain.PopupMenu1Popup(Sender: TObject);
Var
 Actions : TDBTreeViewActions;
begin
 With DBTreeView1 Do Begin
 Actions := AllowedActions;
 mExpand1.Enabled := tvpExpandNode in Actions;
 mCollapse1.Enabled := tvpCollapseNode in Actions;
 mCut1.Enabled := tvpCutSelect in Actions;
 mCopy1.Enabled := tvpCopySelect in Actions;
 mPaste1.Enabled := tvpPasteSelect in Actions;
 mDelete1.Enabled := tvpDeleteSelect in Actions;
 mChangeSelect1.Enabled := tvpChangeSelect in Actions;
 mClearSelect1.Enabled := tvpClearSelect in Actions;
 End;
end;

on OnClick event of each popup option, write the following code :

procedure Tmain.<menu_option>Click(Sender: TObject);
begin
 DBTreeView1.Execute_PopupMenu(tvp<corresponding_action>);
end;

for instance :

procedure Tmain.mExpand1Click(Sender: TObject);
begin
 DBTreeView1.Execute_PopupMenu(tvpExpandNode);
end;

How to use drag and drop with TDBTreeView ?
allow standard drag and drop by setting the DragMode property of TDBTreeView to dmAutomatic,
for drops outside TDBTreeView, use OnDragOver and OnDragDrop events. For instance, a Delete button (named bTrash), which deletes one node may have (example in PASCAL) :

procedure Tmain.bTrashDragOver(Sender, Source: TObject; X, Y: Integer;
 State: TDragState; var Accept: Boolean);
begin
 Accept := (Source is TDBTreeView);
end;

procedure Tmain.bTrashDragDrop(Sender, Source: TObject; X, Y: Integer);
begin
 If Source is TDBTreeView Then Begin
 With TDBTreeView(Source) Do Begin
 If Selected is TDBTreeNode Then Begin
 Delete;
 End;
 End;
 End;
end;

for drops inside TDBTreeView, nothing to do except setting InsertStrategy to tisInsert.
How to know how many nodes have been moved, copied, ... ?
just by reading the following properties, after any operations :

NbCopied : number of nodes copied,
NbMoved : number of nodes moved,
NbDeleted :number of nodes deleted,
NbInError : number of nodes copied/moved/deleted with a DB error.

All of these properties are reset to 0 before an operation starts. Note that nodes skipped by your events (OnTreeNodeAction) are not counted.
Why have I « Access violation ... » or « Database error ... » ?
Main reasons are :

Inside a OnTreeNodeAction event, or sometimes outside, you programmatically perform DB actions, such move on other records, or delete an other one. For instance, calling Synchronize_On(<node>) method during such an event causes a DB move, and maybe a loose of consistency during a TDBTreeView DB action. Remember for instance that NodeFrom, during this event, is a node pointing on a row linked by a master-detail relationship with one or more upper tables. These links are maintained by the BDE,
You give an invalid TTable name or MasterField string in a OnAskQuery event,
Tables or indexes may be corrupted, but we suppose it is the first thing you have checked.
What will be next versions ? (may be...)
Next version will be the v2.0. This version will be divide in three sub-packages :

TScrollableTreeView, a TTreeView, with only the Autoscroll property. This package will be freeware.
TMultiSelectTreeView, a TScrollableTreeView, with Multiselect capability, drag&drop, popupmenu... Exactly as the current TDBTreeView, but this component will be non DB-aware. TMultiSelectTreeView will be shareware.
TDBTreeView, a TMultiSelectTreeView with TDBTreeNode instead of TTreeNode. The only new functionnalities will be : root node will be optional, expand will be DB-cursored. This component will be shareware as today. It will of course include the two other sub-packages.

Of course, we hope v2.0 will be as described hereabove.
Registration, Contact, Technical Support
Registration
For those who use the demo version and are interested by the full version, they may be registered :

on COMPUSERVE (GO SWREG, ID=15070), for a $35 fee per developer (see hereunder),
on WEB (http://www.ddo-org.com), for a 210 FF (French Francs, about $35) per developer (see hereunder), with VISA/Eurocard/MasterCard payment. They give an email address where full version ZIP file will be posted.

Registration is on a per developer per site basis, with a maximum of 5 developers (8 developers on same site cost for 5)
Contact
You may obtain informations by contacting DDO Organisation :

on web : http://www.ddo-org.com,
by fax : +33 561 316 295,
by postal mail : DDO Organisation, 5 avenue Albert Durand, 31700 BLAGNAC, France

You may also subscribe freely to our information electronic list dbtree-list@ddo-org.com. All registered users are, unless specified, automatically recorded under this list.
Technical Support
You may obtain technical support :

on web : http://www.ddo-org.com, and more precisely : http://www.ddo-org.com/components/default.htm (French pages), http ://www.ddo-org.com/components/defaulte.htm (English pages),
by email : mailto:tdbtreeview@ddo-org.com, for any questions about TDBTreeView,
by fax : +33 561 316 295.

Disclaimer
THE SOFTWARE AND THE DOCUMENTATION IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND. ALL OTHER WARRANTIES ARE DISCLAIMED, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT OR THAT THE SOFTWARE'S FUNCTIONS WILL MEET YOUR REQUIREMENTS OR THAT ITS OPERATION WILL BE UNINTERRUPTED OR ERROR FREE. EXCEPT AS SET FORTH IN THIS AGREEMENT, THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE SOFTWARE AND THE DOCUMENTATION IS WITH YOU. IF THEY PROVE DEFECTIVE AFTER THEIR PURCHASE, YOU, AND NOT DDO ORGANISATION, ASSUME THE ENTIRE COST OF SERVICE OR REPAIR. If a disclaimer of implied warranties is not permitted by law, the duration of any such implied warranty is limited to sixty (60) days from the date of purchase by the original end user purchaser.

DDO Organisation	� REFSTYLE "Page de garde" * FUSIONFORMAT �
TDBTreeView

v1.51
� � REFSTYLE "Sous-titre" * FUSIONFORMAT �
User

Manual
�	� DATEENREG \@ "MMMM,jj aaaa" * FUSIONFORMAT �
July
,
21

1997
�

� NOMFICHIER * FUSIONFORMAT �
Dbtvda4e
�	� REFSTYLE \l "Titre 1" * FUSIONFORMAT �
Table

of

Contents
� (� PAGE * FUSIONFORMAT �
1
�/� NBPAGES * FUSIONFORMAT �
24
�

