
TCurrentLanguages Component Version 1.0

License:
This component is been published under the GNU (http://www.gnu.org/licenses/gpl.
html) public license:

TCurrentLanguages Component A component for working with Language Layouts.
Copyright (C) 2003 by Ido Kanner – ik_5@hotmail.com
This component is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
This component is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place - Suite 330, Boston, MA 02111-1307, USA.
--
I also request that any bug fixing or additional code that you publish on your own, please
send me a copy of that code.

About This Component:

The goal of the component is to make a layout manager and to control all the layouts

installed in the user Windows operating system.
This component was designed only for Microsoft Windows, and not for Linux.

Although This component was created with Delphi 7, the component should work with all
other versions of Delphi.

The component version is 1.0.

History:
4-11/5/03 - Component created and cleaned from all annoing bugs that was found.
 I wish to thanks Uri Hartman for helping me with bug testing...

This component was designed in a way that you can change it and inherited all of it's
needed options for tweaking it.

I hope you will find the component helpful for you.

Information about the component:

Files:
LanguageChanger.pas – This file is the main file of the component itslef.
RegLanguageChanger.pas – This file is the registration unit, and a property editor.
LanguageChanger.dcr – This file is the resource file of the component inside the
 Delphi IDE.
layout.bmp – This file is the bitmap file existed in the .dcr file.
TcurrentLanguages.rtf,pdf – This document.
GNU-Public Licence.txt – A copy of the GNU licence.

Installation:
Options->Library menu. Push the button next to the “library path” field. Select the
path where you put all the files mentioned above and press on “ok”. Exit the dialog
by pushing on the “ok” button.

In Delphi 3-7 if the package existed then open it in delphi, go to Tools->Enviorment
Now, Press on the “Compile” button inside package dialog.

If the package does not existed then go to the main menu and select Components-
>Install Component->Into New package. Write the same path where the rest of the
files are something like this in the “Package file name”: LanguageChangerDXXX.dpk
where the XXX stand for the version of your Delphi copy (ie Delphi 4, Delphi 5 etc..).
Now Select all the .pas files written above, and press on “ok”.

When the compilation is over press on the “Install” button and go to “File” menu and
select “Close All” item remember if the package existed then do not save it, while if it
does not exists do save it.
Now search in the Component palate for the “IK - NON Visual” page and you will
find the component there.

Help File:

Constants:
MaxLanguaes = 143;

This constant include the maximum number of layouts that existed in Microsoft Windows.

LT_ID = 0;
LT_LOCOLIZED = 1;
LT_ENGLISHNAME = 2;
LT_SHORTNAME = 3;
LT_NATIVENAME = 4;
LT_EXTANTION = 5;

This constants are the integer identifiers witch been uses with the SetLayoutList procedure.

LTS_ID = 'ID';
LTS_LOCOLIZED = 'LOCOLIZED';
LTS_ENGLISHNAME = 'ENGLISH';
LTS_SHORTNAME = 'SHORT';
LTS_NATIVENAME = 'NATIVE';
LTS_EXTANTION = 'EXT';

This constants are the string identifiers witch been uses with the SetLayoutList procedure.

Types:
TrecLang = record
 strLongLangID : string;
 strLangID : string;
 hklLangID : HKL;
 intILANGUAGE : Integer;
 strSLANGUAGE : string;
 strSENGLANGUAGE : string;
 strSABBREVLANGNAME : string;
 strSNATIVELANGNAME : string;
 strExtention : string;
 end;

This record is the main structure that the component uses:
strLongLangID – This is the original outcome that received by windows.
strLangID – This is the hexa number that received by windows.
hkILangID – This variable is the same as the string but in an integer value.
intILANGUAGE – This variable contains the real identifier of the language.
strSLANGUAGE – This variable is the localized name of the language.
strSENGLANGUAGE – This variable is the English name of the language.
strSABBREVLANGUAGE – This variable is the shorten name of the language
(Usually 3 letters).
strNATIVELANGUAGE – This the name of the language in it's own letters and
native name (English = English, Hebrew = עברית, Arabic = عربسق etc...).
strExtention – This is only 2 letters of the language (taking from the Abbrev
variable).

TLangs = array[0..MaxLanguaes-1] of TrecLang;

This array contain all of the existed layouts data in Windows.
Note: this is only a structure not the container of the actual layouts data.

TLayouts = array of HKL;

This array is a dynamic array structure that contain the existed (installed) language layouts
inside Windows.
Note: This is only a structure not the container of the actual layouts.

TBeforeLanguageChangesEvent = procedure (Sender : TObject;
CurrentLanguage, NewLanguage : TrecLang) of object;

This is a structure of the event BeforeLanguageChanges.
The CurrentLanguage and the NewLanguage parameters are from the TrecLang record.
The sender parameter is from the TObject object, and is telling who send this request.
They are containing the information about the current active language layout and the
requested layout.

TAftherLangueChangedEvent = procedure (Sender : TObject; NewLanguage :
TrecLang) of object;

This is a structure of the event AftherLanguageChanges.
The sender parameter is from the TObject object, and is telling who send this request.
The NewLanguage is from the TrecLang record, it contains the information about the New
layout that just been activated.

TListType = (ltID, ltLocolized, ltEnglishName, ltShortName, ltNativeName,
ltExtantion);

This is a structure that is been in use by the SetLayoutList procedure.
Each identifier is represent an information about the layout.

EFileError = class(Exception);

This is an exception type. It's been raised when the reading and writing data from/to a file
contains errors.

EUnknownIdentifer = class(Exception);

This is an exception type. It's been raised when unknown data is passed as a needed
parameter.

The main component (TcurrentLanguages = class(TComponent)):
procedures:

constructor Create (AOwner : TComponent); overload; override;
constructor Create (AOwner : TComponent; Layout : HKL); overload;
virtual;
constructor Create (AOwner : TComponent; InFile : string); overload;
virtual;

This procedures are the creation constructors and it can contains 3 types of
constructors:
1. The original constructor witch initialize the component.
2. A constructor witch initialize the component and then load a layout.
3. A constructor witch initialize the component and then load a layout from an

existed file.

Note: the constructor declared in the public section.

destructor Destroy; override;

This procedure is a destroying destructor. At the moment it does not contain any
code except an inheritance of the original destructor.

Note: the destructor declared in the public section.

procedure MessageHandler (var Msg: TMsg; var Handled: Boolean);
virtual;

This procedure receive the message about the layout changing of the current
proccess.
This procedure hack into the Application.OnMessage event. But i also execute the
OnMessage event if it was assigned.

Note: the procedure declared in the protected section.

procedure InitilizeLanguagesLists; virtual;

This procedure initialize the properties data existed in the component.

Note: the procedure declared in the protected section.

procedure MakeListFromLayouts (Layouts : TLayouts; out Languages :
TLangs); virtual;

This procedure makes the list of all installed inside the Layouts array and put it into
Languages parameter.

Note: the procedure declared in the public section.

procedure Refresh;

This procedure refreshes all the data that this component uses (i.e. Existed layouts).

Note: the procedure declared in the public section.

procedure SaveToFile (Layout : TrecLang; OutFile : string); virtual;

This procedure Save a Layout record into a file.
The Layout parameter is of type TrecLang. It is the record that needs to be saved.
Note, that the procedure does not check if the data inside the record is valid or
existed, so please make sure by yourself to validate it.

Note: the procedure declared in the public section.

procedure LoadFromFile (InFile : string; out Layout : TrecLang); virtual;

This procedure load a saved layout from an existed file. If the file does not exists,
then the procedure raises and exception of EfileError.
The InFile parameter is for a file to load.
The Layout parameter is a record that receive the data that loaded from the file.

Note: the procedure declared in the public section.

 procedure SetLayoutList (ListType : TListType; List : TStrings); overload;
virtual;
 procedure SetLayoutList (ListType : Integer; List : TStrings); overload;
virtual;
 procedure SetLayoutList (ListType : string; List : TStrings); overload;
virtual;

This procedure put a type of Layout information into a TStringList while the TStrings
Is only an abstract.
The procedure takes all the existed layouts that installed inside Windows, thats why
It adds the data into a TString.
ListType can be or a TListType parameter, or an integer parameter or a string
parameter. In order to know the integer and the string values allowed look at the
constant section of this document. In order to know the values that the TListType
can have, look at the Types section in this document.

Note: the procedure declared in the public section.

Functions:

Note: All of the following functions existed only in the public section.

function CountLayouts : Integer; virtual;

This function counts the existed layouts in Windows.
If there was an error return, then the value of the function will be 0. If no error was
found it will return the number of existed layouts even if there is only one layout.

function AvilableLayouts (out Layouts : TLayouts) : Boolean; virtual;

This function puts the existed layouts in Windows inside a TLayouts paremter.
The function return true if there was no error receiving the layouts. But if there was
an error it will return false.

function GetLanguageData(Layout : HKL; Data_Type : Integer; out Data :
string) : Boolean; virtual;

This function is an abstract function. It receive a Layout and a DataType information
are return the wished data inside the Data parameter.
If the function failles, it will return false, otherwise it will return true.
This function uses the GetLocalInfoA for Windows 9x/Millenum/XP home and
GetLocalInfoW for Windows NT/2000/XP Pro etc... .
The Data_Type is a Windows API constant like LOCALE_ILANGUAGE,
LOCALE_SENGLANGUAGE and more. For more information look in the Windows
API documents about the GetLocaleInfo function.

function GetLanguageID(Layout : HKL; out ID : string) : Boolean; virtual;
function GetLanguageLocolizedName(Layout : HKL; out Name : string) :
Boolean; virtual;
function GetLanguageEnglishName(Layout : HKL; out Name : string) :
Boolean; virtual;
function GetLanguageShortenName(Layout : HKL; out Name : string) :
Boolean; virtual;
function GetLanguageNativeName(Layout : HKL; out Name : string) :
Boolean; virtual;
function GetLanguageExtentionName(Layout : HKL; out Name : string) :
Boolean; virtual;

All of this functions uses the GetLanguageData function.
They retrieve information about a given layout and put the result into the Name/ID
parameter.
If the functions failles then they return false, otherwise they will return true.

function FillArray (Layout : HKL; out recLang : TrecLang) : Boolean; virtual;

This function receive a layout and put the data of it inside a TrecLang record.
The Layout parameter is the given layout and the recLang parameter is the returned
data.
If the function is successful then it return true otherwise it will return false.

function GetActiveLayout : HKL;

This function retrieve the handle of the current active layout in this process.

function ActiveLayout (Layout : HKL) : Boolean; overload; virtual;
function ActiveLayout (Layout : TrecLang) : Boolean; overload; virtual;

This function activate a wished layout. The activation set the wished layout to be the
active one... i.e. if for example the current active layout is Russion and you wish
that English will be the current layout this function does it.
The function can have a layout handle or a TrecLang record.
The function does not check to see if the record is full or with a valid data.
The function return true if the activation of the layout was successful, otherwise it will
return false.

function NextLayout : Boolean; virtual;
function PreviousLayout : Boolean; virtual;

This functions sets the Active layouts to the next or previous layout that
existed. It uses the layout list of Windows and it uses that order in order to
set the next or previous layout in the list.
The functions return True if the successful, otherwise it will return false.

function GetIDFromRecord(DataType : TListType; Value : string) : HKL;
virtual;

This function will return the layout handle by searching all of the internal array of
layouts. The value type is represented by the DataType parameter and the
Value parameter is the string to be search (including an handle that you wish to see
that is existed).
The function will return the handle of a layout if the layout was found or 0 if the
layout was not found.

Properties:

Public properties:

property Handle: HKL;

This is a read only property that will give you the current activated layout handle.

property AutoRefresh : Boolean;

This property determine if every action will refresh the internal layouts array
information or not.
Default is false.
Please do not use this property unless you are know what you are doing. It seems
that Delphi does not love to refresh the properties information on any action it takes
so don't use it. If you wish to refresh the data call to the Refresh procedure.

Published properties:

property LayoutID : string;
property LayoutLocolizedName : string;
property LayoutEnglishName : string;
property LayoutShortName : string;
property LayoutNativeName : string;
property LayoutExtention : string;

This properties are the data of the activated layout of the active process.
All of the information of this properties are string.

LayoutID – return the ID of the active layout (not the handle but the layout
number).
LayoutLocolizedName – return the localized name of the active layout.
LayoutEnglishName – return the English name of the active layout.
LayoutShortName – return the short name of the active layout (usually 3
letters).
LayoutNativeName – return the “real” name of the active layout (English =
English, Hebrew = עברית, Arabic = عربسق etc...).
LayoutExtention – return 2 letters of the short name of the active layout.

Changing this properties will change the layout language to the selected layout.

Events:

property AftherLanguageChanges : TaftherLangueChangedEvent;

This event happens after the user caused a layout changes to the current process.
To see the structure of the created procedure see the Types section of this
document.

property BeforeLanguageChanges : TBeforeLanguageChangesEvent

This event happens when the user wishes to change the layout and the changes of
the layout was just sent.
To see the structure of the created procedure see the Types section of this
document.

Global Functions:

function MAKELCID (wLanguageID, wSortID : Word) : DWORD;

This function is execute the Windows API macro with the same name.
The function creates a locale identifier from a language identifier.
The wLanguageID parameter Specifies the language identifier. This parameter is a
combination of a primary language identifier and a sublanguage identifier and is usually
created by using the MAKELANGID function witch does not been created in this code.
The wSortID parameter Specifies the sort identifier.

function GetLocaleDataA (ID: LCID; Flag: DWORD; out Size : Integer) : string;
function GetLocaleDataW (ID: LCID; Flag: DWORD; out Size : Integer) : string;

This functions is a tweak of the SysUtils unit internal functions with the same name.
This functions uses NT/9x functions (A for 9x and W for NT).
The functions Query the OS for information for a specified locale.

Global Variables:

LanguagesList : TLangs;

This variable is the exited layout lists that is been used by the component and by the
property editors classes ...

LayoutNum : Integer;

This variable return the number of layouts inside the LanguageList array.

Reference

Delphi:
1. Borland -> http://www.borland.com/
2. Google.com -> http://www.google.com/
3. Torry.ru -> http://www.torry.ru/
4. Swiss Delphi Center -> http://www.swissdelphicenter.ch/

Windows API: (http://msdn.microsoft.com)
1. ActivateKeyboardLayout.
2. Locale Information.
3. WM_INPUTLANGCHANGE.
4. MAKELCID.
5. WM_INPUTLANGCHANGEREQUEST.
6. Getkeyboardlayoutlist.
7. GetLocaleInfo.
8. Languages Layout list:

Identifier Language
0x0000 Language Neutral
0x007f The language for the invariant locale (LOCALE_INVARIANT).
0x0400 Process or User Default Language
0x0800 System Default Language
0x0436 Afrikaans
0x041c Albanian
0x0401 Arabic (Saudi Arabia)
0x0801 Arabic (Iraq)
0x0c01 Arabic (Egypt)
0x1001 Arabic (Libya)
0x1401 Arabic (Algeria)
0x1801 Arabic (Morocco)
0x1c01 Arabic (Tunisia)
0x2001 Arabic (Oman)
0x2401 Arabic (Yemen)
0x2801 Arabic (Syria)
0x2c01 Arabic (Jordan)
0x3001 Arabic (Lebanon)
0x3401 Arabic (Kuwait)
0x3801 Arabic (U.A.E.)
0x3c01 Arabic (Bahrain)
0x4001 Arabic (Qatar)
0x042b Windows 2000/XP: Armenian. This is Unicode only.
0x042c Azeri (Latin)
0x082c Azeri (Cyrillic)
0x042d Basque
0x0423 Belarusian
0x0402 Bulgarian
0x0455 Burmese
0x0403 Catalan
0x0404 Chinese (Taiwan)
0x0804 Chinese (PRC)
0x0c04 Chinese (Hong Kong SAR, PRC)
0x1004 Chinese (Singapore)
0x1404 Windows 98/Me, Windows 2000/XP: Chinese (Macau SAR)
0x041a Croatian
0x0405 Czech
0x0406 Danish

0x0465 Windows XP: Divehi. This is Unicode only.
0x0413 Dutch (Netherlands)
0x0813 Dutch (Belgium)
0x0409 English (United States)
0x0809 English (United Kingdom)
0x0c09 English (Australian)
0x1009 English (Canadian)
0x1409 English (New Zealand)
0x1809 English (Ireland)
0x1c09 English (South Africa)
0x2009 English (Jamaica)
0x2409 English (Caribbean)
0x2809 English (Belize)
0x2c09 English (Trinidad)
0x3009 Windows 98/Me, Windows 2000/XP: English (Zimbabwe)
0x3409 Windows 98/Me, Windows 2000/XP: English (Philippines)
0x0425 Estonian
0x0438 Faeroese
0x0429 Farsi
0x040b Finnish
0x040c French (Standard)
0x080c French (Belgian)
0x0c0c French (Canadian)
0x100c French (Switzerland)
0x140c French (Luxembourg)
0x180c Windows 98/Me, Windows 2000/XP: French (Monaco)
0x0456 Windows XP: Galician
0x0437 Windows 2000/XP: Georgian. This is Unicode only.
0x0407 German (Standard)
0x0807 German (Switzerland)
0x0c07 German (Austria)
0x1007 German (Luxembourg)
0x1407 German (Liechtenstein)
0x0408 Greek
0x0447 Windows XP: Gujarati. This is Unicode only.
0x040d Hebrew
0x0439 Windows 2000/XP: Hindi. This is Unicode only.
0x040e Hungarian
0x040f Icelandic
0x0421 Indonesian
0x0410 Italian (Standard)
0x0810 Italian (Switzerland)
0x0411 Japanese
0x044b Windows XP: Kannada. This is Unicode only.
0x0457 Windows 2000/XP: Konkani. This is Unicode only.
0x0412 Korean
0x0812 Windows 95, Windows NT 4.0 only: Korean (Johab)
0x0440 Windows XP: Kyrgyz.
0x0426 Latvian
0x0427 Lithuanian
0x0827 Windows 98 only: Lithuanian (Classic)
0x042f FYRO Macedonian
0x043e Malay (Malaysian)
0x083e Malay (Brunei Darussalam)
0x044e Windows 2000/XP: Marathi. This is Unicode only.
0x0450 Windows XP: Mongolian
0x0414 Norwegian (Bokmal)
0x0814 Norwegian (Nynorsk)
0x0415 Polish

0x0416 Portuguese (Brazil)
0x0816 Portuguese (Portugal)
0x0446 Windows XP: Punjabi. This is Unicode only.
0x0418 Romanian
0x0419 Russian
0x044f Windows 2000/XP: Sanskrit. This is Unicode only.
0x0c1a Serbian (Cyrillic)
0x081a Serbian (Latin)
0x041b Slovak
0x0424 Slovenian
0x040a Spanish (Spain, Traditional Sort)
0x080a Spanish (Mexican)
0x0c0a Spanish (Spain, Modern Sort)
0x100a Spanish (Guatemala)
0x140a Spanish (Costa Rica)
0x180a Spanish (Panama)
0x1c0a Spanish (Dominican Republic)
0x200a Spanish (Venezuela)
0x240a Spanish (Colombia)
0x280a Spanish (Peru)
0x2c0a Spanish (Argentina)
0x300a Spanish (Ecuador)
0x340a Spanish (Chile)
0x380a Spanish (Uruguay)
0x3c0a Spanish (Paraguay)
0x400a Spanish (Bolivia)
0x440a Spanish (El Salvador)
0x480a Spanish (Honduras)
0x4c0a Spanish (Nicaragua)
0x500a Spanish (Puerto Rico)
0x0430 Sutu
0x0441 Swahili (Kenya)
0x041d Swedish
0x081d Swedish (Finland)
0x045a Windows XP: Syriac. This is Unicode only.
0x0449 Windows 2000/XP: Tamil. This is Unicode only.
0x0444 Tatar (Tatarstan)
0x044a Windows XP: Telugu. This is Unicode only.
0x041e Thai
0x041f Turkish
0x0422 Ukrainian
0x0420 Windows 98/Me, Windows 2000/XP: Urdu (Pakistan)
0x0820 Urdu (India)
0x0443 Uzbek (Latin)
0x0843 Uzbek (Cyrillic)
0x042a Windows 98/Me, Windows NT 4.0 and later: Vietnamese

Primary language identifierSublanguage identifierMeaning

LANG_NEUTRALSUBLANG_NEUTRALLanguage neutral

LANG_NEUTRALSUBLANG_DEFAULTUser default language

LANG_NEUTRALSUBLANG_SYS_DEFAULTSystem default language

