Shareware trial version.

TSubclass32 v 1.0- Delphi 32-bit Control

Author: Jiries Elaraj

Progency Software

http://members.aol.com/progency/index.html

e-mail: progency@aol.com

Please send any bug reports or comments to me via e-mail.

Subclassing, what is it? (Overview)

Subclassing is one of the most powerful things, if not the most powerful thing that you can do within the Windows enviornment. It is the process of taking over, or peeking into any valid window by replacing its window procedure with one of your own. What does this mean? This means that you can monitor messages coming to specified window(s), and if you choose, discard them, or even change them. The extent of this power is infinite because you are in command of the window and control everything about it. The only limitation is your imagination.

What is included with this control?

Some frequently asked questions are as follows:

Q: I thought it was not possible to subclass windows belonging to external applications in a 32-bit enviornment, does this hold true with this control?

A: That is a major obstactle about the 32-bit enviornment, but that does not hold true with this control. This component allows you to easily subclass any valid window within any process, not only your applications process.

Q: Can this control subclass more than one window at the same time? If so, will it subclass multiple windows within multiple processes?

A: YES to both. It allows you to subclass any number of windows at the same time whether the window is within one process or another.

Q: Subclassing components that I have seen just allow you to monitor messages the window is receiving, is this control any different?

A: Yes it is different. Not only does this control allow you to monitor messages, but it also allows you to change the messages, wParams, and/or lParams the window is receiving. This allows you to have complete control over the window as you tell it how to behave.

Q: Is this control only limited to subclassing 32-bit windows?

A: No, even though it is intended to subclass 32-bit windows, it has proven successful and no known problems appear when subclassing a 16-bit window. However, this has only been tested under Windows 95, this may not hold true for WindowsNT or other 32-bit OS's.

Q: I have seen other Windows controls like this in excess of $100, how much is a registered version of this component?

A: For a registered copy of this native Delphi control, the 32-bit control is only $50. For detailed billing information, see the registration form.

TSubclass32:

Properties

ReceiveMessages:

This property has two options: rmBeforeDefProc, and rmAfterDefProc. The default is rmAfterDefProc. This specifies when your window procedure receives the messages and information coming to the specified window. rmBeforeDefProc will force your window procedure to recieve the window proc information before the default window procedure is called, allowing you to directly change its behavior. rmAfterDefProc calls your window procedure after the default window procedure is called, therefore being much "safer" than rmBeforeDefProc. Therefore you cannot change any behavior because the default window procedure has already been called.

IMPORTANT: If the property is set to rmBeforeDefProc you must be aware of the code you are entering in for the window procedure. Keep in mind that the default window procedure has not yet been called and any code you place in the procedure may either lag or cause a critical error (Windows General Protection Fault) to the window being subclassed and may either crash the application containing the window, or even your system.

WindowHandle:

Specify the handle of the window to subclass.

Start (non-visual):

Boolean property: Set to TRUE when you want to start the subclass, and set to FALSE when you want to stop the subclass.

Events

OnMsgReceived:

Defined as:

procedure (var Msg: Word; var wParam, lParam: Longint; var CallDefWndProc: Boolean);

Msg - The current message the window is receiving.

wParam - The current wParam information the window is receiving.

lParam - The current lParam information the window is receiving.

CallDefWndProc - Default is TRUE. Change to false to indicate you do not want the default window procedure to be called.

This is the procedure that the subclassed window procedure is replaced with.

NOTE: Any of these parameters that you change will only affect the subclassed window if the ReceiveMessages property is set to rmBeforeDefProc. Otherwise, it will have no affect on the window.

Methods

function MsgToStr(Msg: Word): String;

This function will convert most messages (as word values) into a string and return as such.

If Msg is not found, then the string returned is "Unknown", in which you may convert it to a hexidecimal WM_USER or leave it as is. See the example application.

function StrToMsg(Msg: String): Word;

This function will convert most messages (as strings) into a Word value and return it as such. If Msg is not found, it returns 0.

KNOWN BUGS, OTHER THINGS OF IMPORTANCE

- When your application terminates, for insurance, if the subclass is started, be sure to manually stop it. Though the control attempts to stop the subclass on destruction, it may fail for some applications. It has been tested on many applications, and if it fails, better watch out. But if you make sure to stop it on termination of your application, you have nothing to worry about. This bug has been noted, and should be fixed for the next release.

- You do not want to use more than one control to subclass the SAME window. For instance, if I were to subclass the Notepad window with one control, I do not want to subclass the same window with another control (unless you had a specific purpose in mind). However, if I wanted to subclass the Edit window of the Notepad with another control, or subclass another instance of the Notepad window, that is perfectly fine. Just NOT the same window with 2 different controls.

- If you notice excessive lag on the window being subclassed, it may be caused by a few different things: If the ReceiveMessages property is set to rmBeforeDefProc, if you put a lot of code in the window procedure, it may lag the window because the default window procedure has not been called yet. However, if you notice that there is excessive lag with minimal code, or just seems to be more than usual, try rebooting your computer or freeing some system resources. But this should not be a frequent problem by any means.

-Keep in mind that subclassing a window belonging to another application in the 32-bit enviornment cannot be done directly. And since Windows 95 and Windows NT (NT more so) have security between processes, meaning that each process is protected in it's on memory space, do not be completely surprised if you get Access Violation errors. This is not a major problem at all though, just something that I thought should be noted.

-One last thing, just keep in mind that this is the first release and there may be a bug here and there. Report all bugs and they will be fixed.

That's all! If you choose to use this, PLEASE register it. See registration file for details.

