Screen Dream

A GUI Suite for Delphi Programmers

Owner’s Manual

John Reynolds	327 62nd St NW�Custom Windows Programming™	Albuquerque, NM 87105�(505) 836-1384	 (505) 264-0708�

Licensing Statement

For each copy of Screen Dream purchased, you may run it on not more than one machine at one time. We realize that you may need work in separate locations and on separate computers; this is acceptable, providing that you not have copies of one purchased package running or being used simultaneously. By purchasing this package, you are given the right to use it to develop application programs. You are also given the right to make one diskette copy of this product for archival means. However, it may not be distributed to others for any purpose, including but not limited to demonstration. Anyone desiring free demonstration copies can contact Custom Windows Programming at (505) 836-1384/(505) 264-0708 or by email at jreynd@rt66.com. U.S. Mail address is 327 62nd St NW, Albuquerque, NM 87105.

This package was designed to assist you, the developer, in developing and writing application programs. This software and/or source code you have received may not be distributed, in part or in whole, to others for the purpose of using it to develop software applications. It can only be distributed as a part of standalone software applications.

We will prosecute infringements on this agreement to the fullest extent of the law.

If you have any questions about this statement, please contact John Reynolds at (505) 836-1384 / (505) 264-0708, or Internet E-Mail at jreynd@rt66.com.

Disclaimer:

John Reynolds, Custom Windows Programming, Distributors, BBSes and/or On-line Providers or any other party(ies), are not liable for any damages or problems caused by this program, regardless of damage, regardless of reason. Damage liability if proven and required in any case is limited to replacement of the price you paid for this package. Every effort was made to ensure that this program runs as advertised on your machine and your target machines. Future problems (if any) with this software will be dealt with and fixed to the ability of John Reynolds and Custom Windows Programming, until the release of the next version and beyond that at the discretion of Custom Windows Programming. Unregistered users have no claim in any case; without registration no technical support, patches, bugfixes or other services or material will be made available.

Table of Contents

Licensing, Installation and Overview

Licensing Statement: 				 3 �Installation Instructions:	 7 �Overview:		 9 �

Resolution Independence

TDevice_Independence Control:	 10�TDevice_Independence Control Events:		 13�Making a Form Resolution Independent:		 15�TDevice_Independence Incompatibilities:		 17�

Client Movement and Toolbar Information

TClientMove Control:	 19�Toolbars and Toolbar Icons:	 20�Making Toolbars behave like standard forms:	 21�

Tiled Backgrounds

TTileBgnd Control:	 23�Selecting Bitmaps for the TTileBgnd Control:	 25�TTileBgnd Concerns and Incompatibilities:	 26�

Technical Support:	 27�

Installation Instructions

Note: The following instructions assume that you installed Delphi to the default \Delphi directory.

1.	Copy all files with the HLP extension to your Delphi\Bin directory (Di.Hlp, TTileBgn.Hlp).

2.	Copy all files with the KWF extension to your Delphi\Help directory.

3.	Copy all files with the DCU and DCR extension to your Delphi\Lib directory or make a new directory and ensure that in your Options|Environment you reference the location of those files. These are the library files.

4.	To ensure that your on-line help works, you must add the indexes to Delphi’s help index. These are the files with the KWF extension. Run HelpInst.Exe, from your Delphi Group.

5.	Load the file Delphi.Hdx from your \Delphi\Bin directory into HelpInst, and add the files DI.KWF and TTileBgn.KWF (from the \Delphi\Help directory) to the group of files already present.

6.	Save the file (the keywords are automatically added).

7.	Copy all the files with the BMP extension to a directory you consider suitable. You might make a subdirectory called Tiles under the Delphi\Images directory for this purpose if you like. Remember this location, as you’ll find yourself using these files often.

8.	Load Delphi and add the files Devc_Ind.Dcu, CliDn.Dcu, and Bgn.Dcu to your library.

9.	Everything should be ready to go. If you haven’t done so already, read all of these instructions. There are a few pitfalls to avoid, and if you read the instructions you’ll be prepared to continue.

10.	Start using Screen Dream!

Note:	Help files can also be perused by either creating an icon in the Windows Program Manager, by choosing File|Run from the Program Manager, or by doubleclicking on the files from the File Manager. If you used Setup to install Screen Dream, they will be available by doubleclicking on the appropriate icon in the Screen Dream group.

	In the respective help directory (probably \DELPHI\BIN), these files are named: DI.HLP, and TTILEBGN.HLP. DI covers the TDevice_Independence component and TTILEBGN covers the TTileBgnd and TClientMove components.

Overview

The Screen Dream package was designed to assist you in developing Multimedia Packages. It is the first in a series called Coding Completely Optional. This first package contains three visual controls. It also contains source code to allow powerful, flexible and easy creation of toolbars.

TDevice_Independence:

The TDevice_Independence control allows you to create resolution-independent applications. You simply drop it on the form to create a full-screen application for any resolution. There are a few other options that are available to you by setting properties. These will be detailed a little later.

TClientMove:

The TClientMove control lets you create caption-less forms that can still be moved by the user. Its sole purpose is to allow the user to click in the client area of the form and drag it to another location on the screen.

TTileBgnd:

The TTileBgnd component lets you add tiled bitmap backgrounds to your forms. It gives you an easy way to add texture and style to your applications. It also allows you to put borders on these forms. The properties specific to this control will be detailed later. The TTileBgnd component doesn’t work on MDI forms, but does work on MDI Child forms.

Toolbars:

The creation of toolbars is easily done using the TClientMove and TTileBgnd components and a prebuilt example that can be saved as a new file and modified. This was done instead of creating a toolbar VCL for the added flexibility. A VCL component for toolbars may be developed in the future if sufficient demand exists.

TDevice_Independence Control

Properties

OrigFormWidth:				 Integer.�

This is the width of your form when the application starts. It’s read-only at run-time. Default: None.

OrigFormHeight:			 Integer.�

This is the height of your form when the application stars. It’s read-only at run-time. Default: None.

FrmWidth:				 Integer.�

This is identical to the form’s Width property. It is used by the control to provide a quick access to the value and to avoid querying the actual form during loops. Default: None.

FrmHeight:				 Integer.�

This is identical to the TForm’s Height property. It is used by the control to provide a quick access to the value and to avoid querying the actual form during loops. Default: None.

ScreenWidth:				 Integer.�

This is the width of the screen at the current resolution. If the system were running in 640X480 mode, this value would be 640. Default: None.

ScreenHeight:				 Integer.�

This is the height of the screen at the current resolution. If the system were running in 640X480 mode, this value would be 480. Default: None.

MaxScreenSize_Percent:		 Integer.�

This property is set at design-time or run-time. It tells the control not to allow the width of the form to go beyond MaxScreenSize_Percent percent of the screen’s width. If the height of the form is greater that the screen height, the form’s width is reduced to a value that will allow the form’s height to be ScreenHeight or less. If this property’s value is zero (0), no adjustment to the height is made after the form is resized; it is simply scaled to the new size. Default: zero (0).

MinScreenSize_Percent:		 Integer.�

You can set this value at design-time or run-time. It tells the control not to allow the width of the form to go below MinScreenSize_Percent percent of the screen’s width. If this property’s value is zero (0), no adjustment to the height is made after the form is resized; it is simply scaled to the new size. Default: zero (0).

FormInUpperLeft:			 Boolean.�

If this is true and AutoStretch is true, the form is automatically positioned to the upper-left corner upon start. It is assumed that most users will want a full-screen form, and this is to prevent having to code this location each time. If this property is set to False, the form will be positioned at the design-time setting. Depending on your screen’s resolution, you may need to position your forms properly at run-time. Default: True.

AutoStretch:				 Boolean.�

This property allows you to turn resolution dependence on and off. When AutoStretch is off, if the form is resized(no changes to the form are made and no record is kept of the change. This can have ill side-effects. The main purpose of this property is to allow you to create forms that are not the exact shape of the screen. When the form is first activated, you can turn AutoStretch off, resize the form to the screen size and turn AutoStretch back on. This will ensure that no gaps exist between the side or bottom of the form and the screen border. Default : True.

ScaleTDrawGrid:			 Boolean.�

This property allows you to scale grids descended from the TDrawGrid control. Normally, the scaling done to the grid will be exactly what you want. There are, however, certain grid configurations that will render unsatisfactory results for various reasons. You can use the OnAfterResize event to take care of any unsatisfactory results if this is the case. If ScaleTDrawGrid is False, row heights, column widths and fonts will be resized but the outer section .. the client width of the grid will not be modified and will probably be much larger than you intended. Default: True.

Events

OnAfterResize:			 TNotifyEvent.�

This event is spawned directly after the form is rescaled by TDevice_Independence. It can be used to make any desired changes to the control’s size for the few components that aren’t supported perfectly. Resizing should not be done to the form from within this event, but controls only. If that is done, it can cause rescale events to be missed.

OnBeforeResize:		 TNotifyEvent.�

This event is spawned immediately before the form is rescaled by TDevice_Independence. It can be used to get a “before and after” picture of your form and associated controls’ sizes. You probably won’t need to use this routine but if you do, please do so with care. Modifying control and form sizes from within this routine can lead to some undesirable visual effects.

OnInitialized:				 TNotifyEvent.�

This event is spawned immediately after the initialization process. Other cautions listed elsewhere apply to this event.

OnBeforeInitialize:			 TNotifyEvent.�

This event is spawned just before TDevice_Independence runs initialization code for the applicable form. This is a good place to get the original component size for any component that you wish to resize manually in the OnAfterResize event after it has been scaled. See Methods for help with manual sizing.

Methods

Function GetNewItemWidth

	(OriginalWidth : Integer):	 Integer;�Function GetNewItemHeight

	(OriginalHeight : Integer) ;	 Integer;�

These functions, when given the original width or height of a component, return the width or height that component should be at the current size. They’re useful when you need to resize components manually for some reason. The best place to do manual sizing is in the OnAfterResize event. The best place to get the Original Height and Width of a component is in the OnBeforeInitialized event.

Making a Form Resolution Independent:

To make a form resolution independent, simply drop the TDevice_Independence control on the form. At run-time, its default settings will make the form fill the screen—and resize the controls to make the form virtually look the same at any resolution.

If you want a full-screen form, it must be the exact shape of the screen. If your form’s size is 640X480, 800X600, 1024X768, 320X240, for example, it is the exact shape of the screen. The reason for this is that the control resizes the form based on the form’s width, and then sizes the height to match. If the height is greater than the screen’s height, the height is changed to the height of the screen and the width is returned to its original percentage of the form’s height. Similar to a bitmap’s aspect ratio—the form can’t be stretched out of shape without manually turning AutoStretch off and resizing the form with code.

Making a Form Remain a Specified Percentage of the Screen:

The MinScreenSize_Percent and MaxScreenSize_-Percent properties allow you to keep a form within a required range of screen “real-estate.” To set these properties, guess at the percentage of Screen width the form is taking up and put that percentage in the appropriate property as a whole number between 1 and 100. If the number in MaxScreenSize_Percent is 30 and the number in MinScreenSize_Percent is 10, the form will not allow resizing by the user (or code) beyond those ranges. Either property can be used with or without the other. If the number in either property is zero, it will be ignored.

It is fairly common to have scaling discrepancies when the form is scaled to an extremely small size and back, or to a size that is significantly smaller than the original form’s designed size. The scaling is done on the last width the form occupied. When scaled to a very small size, an integer is inadequate for differences and some precision is lost. When the form is then resized to a larger portion of the screen, this effect can sometimes be seen in the form of smaller or larger fonts. The effects of this can be minimized by making sure there’s room in labels and textboxes for larger or smaller font size. If you leave some room for error, it can be sized up and down indefinitely with no problems. You can also limit the minimum size to prevent scaling discrepancies. You can ignore this completely for the most part if the form will occupy the whole screen throughout the instance of your application.

Use TrueType fonts for device-independent applications. Non true-type fonts work, but scaling is not as smooth and there’s usually blocky text. You may not have this option if your forms and captions need to be extremely small; TrueType doesn’t seem to look good on the screen at extremely small sizes. For toolbar captions I normally use the SmallFont fonts. It’s your discretion as to whether or not toolbars should be device-independent. I would say you’re better off leaving them as they were at design time.

Incompatibilities:

Delphi’s dialog controls don’t work too well with the TDevice_Independence control in some cases, especially when a tiled background is used at the same time. Take care when creating resolution independent forms with these controls on them. If it looks right on your program when running on your machine, chances are it’ll work on other machines as well but test it thoroughly to make sure. See Events for some events that will allow you to bypass this limitation.

The TStringGrid and TDrawGrid components now work with the TDevice_Independence control. There are some behaviors that you should be aware of, however. When the form is resized, TDevice_Independence checks to see if the ScrollBars property is set to [ssNone]. If not, it re-scales the cells anyway but allows the width of the Grid control to increase beyond its borders unless it’s within 5% either direction of the total column width and row height. This is necessary to prevent the scrollbars from covering part of the control at all times when you didn’t intend them to. You can use the ScaleTDrawGrid property (set to false) to prevent undesired border size changes. If you bypass TDrawGrid scaling you can also use the OnAfterResize event, GetNewItemWidth and GetNewItemHeight methods to put the border where you want it.

If the Scrollbars property is set to [ssNone], the border automatically shrinks to fit the size of the control.

Currently the TDevice_Independence component doesn’t support MDI child forms completely. If you allow the form to resize you should set an upper limit on it. It has a tendency to allow the form to grow more than the spacing between controls and the controls themselves. This allows the right and bottom form borders to steadily increase the distance from the controls as they are increased in size. You’ll get better results if you leave a fair distance between borders and controls, especially the right and bottom form borders—to prevent the border from covering controls when the form’s size is reduced by the user. Also with MDI Child forms and any other forms, AutoScroll should be False.

Do not use any other device independence product (such as popular VBXes) in the same application. Strange results will occur and you won’t get exactly what you were expecting.

TClientMove Control

Properties

Enabled:				 Boolean.�

With this property enabled, the user can hold the left mouse button down on the form and drag the form to a new location. With it disabled, the control doesn’t do anything.

Creating Toolbars

To create toolbars, a tutorial is provided on the following pages. Follow the instructions step by step and you’ll have a professional, flexible and easily-modified toolbar in a few minutes.

Border/Form Captions

The first thing you should do is make the border and form caption disappear. Required form settings for making the border and actual form caption disappear are:

1.	Select the form. Then you need to double-click on the + at the left of the word BorderIcons in the Object Inspector. This drops down a list of border icons. You then need to make all of these icons False.

2.	The Form’s Caption property must be blank, so after you name the form, delete the value in the Caption property field.

Note:	A rare behavior in form captions is to be visible after all this has been done. If this happens, most likely there’s a space or two in the Caption property box. A guaranteed fix is to position your cursor in this box, hit CTRL-HOME, hold down the shift key and press END. Then press the DELETE key. That will solve the problem by removing the offending space(s). This is not a Delphi or Screen Dream problem, but simply a behavior of spaces: they’re invisible.

Toolbar Icons

Speed Buttons (TSpeedButton) are usually the best choice for toolbar icons. In order to actually receive a click event on your button, it needs to be in a container if you’re using either the TTileBgnd or TClientMove components. Steps then for adding Speed Buttons to the form are as follows:

1.	Draw a TPanel component on the form.

2.	Draw your Speed Buttons inside the TPanel component.

3.	Add code as needed to the MouseDown, MouseUp or Click events of the applicable button.

You can use the TBitBtn component without putting it in a TPanel component, however, it has a tendency to lose its caption and exhibits this behavior more frequently when using Screen Dream components.

Tiled Backgrounds/Borders/Toolbar Client Movement

If you want a tiled background or border, and/or a toolbar that allows the user to move it by clicking in the client area of the form, place the appropriate components on the form.

Half-Height Captions

For half-height captions on your toolbar, you’ll need to use a TPanel component and write a little bit of code. This code is included below and you can use it with no alteration (except changing object names). The required code allows you to trick Windows into thinking you clicked on the form’s invisible title bar when you click on the TPanel component.

Here’s step by step instructions for accomplishing the task. For purposes of this tutorial, I’m going to name the components the same way Delphi does: Panel1, BitBtn1, etc.

1.	Place a TPanel Component on the form (TPanel1).

2.	Change the TPanel’s Color property field to clActiveCaption. This will make the caption the same color as any active form caption on the user’s system. Note: You can also change this color in the form’s focus events to exactly simulate a real title bar’s behavior.

3.	Place a TImage component on the left end of the TPanel component. This will be your control box. You can also optionally place it on the far right end and simulate a Windows 95 Form Close button. You’ll have to create icons to give a graphical representation of the buttons you require. CtlBox.bmp is included on your installation diskettes for use as a control box.

4.	Place TImage components on the TPanel for minimizing the toolbar and maximizing the toolbar if you want to provide that functionality to your users. I didn’t, but it would be just as easy. The sample file TBar2.Pas, included on your distribution diskettes, shows you example source code, component placement and properties.

5.	In the Click event of the applicable TImage components, put your code for closing, hiding, showing, the toolbar.

6.	In the MouseDown event for the TPanel component, put the following code:

{Make the application ignore the MouseDown by sending a MouseUp to it}

SendMessage(Panel1.Handle,

Wm_LButtonUp, 0,0);

{Start Window Movement—sending the Form notification that its title bar was just clicked}

SendMessage(Form1.Handle, 274,61456 or 2,0);

[...where Panel1 is the name of the TPanel component being used and Form1 is the name of the TForm being used.]

7.	Similarly in the MouseUp event for the TPanel component, put the following code:

{End Window Movement}

SendMessage(Form1.Handle, 514, 0, 0);

Note:	You need to include WinProcs in the uses clause for the SendMessage function to work.

9.	I changed the TPanel’s font to SmallFonts, Regular, 7-point. You may wish to use a different font. At any rate, the source code is available for you to use to prevent doing much of this work and for additional examples, if you need it.

10.	See notes on the TTileBgnd control for information on setting border properties. TBDemo.Pas and Tool2.Pas contain samples of customized borders. With Tool2.Pas, it’s just a standard black border. TBDemo.Pas uses a customized, 3d-type border, though. Experiment with the TTileBgnd border settings to get the border you want.

TTileBgnd Control

Properties

BorderOuterWidth:			 Byte.�

This is the width of the outermost border. If set to zero, no outer border will be drawn on the form. Allowed range is 0 to 5. Default: 0.

BorderInnerWidth:			 Byte.�

This is the width of the border line drawn next to the outermost border. If set to zero, no inner border will be drawn on the form. Allowed range is 0 to 5. Default: 0.

BorderInnermostWidth:			 Byte.��	This is the width of the border closest to the inside of the form. If set to zero, no innermost border will be drawn on the form. Allowed range is 0 to 5. Default: 0.

LowCornerOuterColor:			 TColor.�

This is the color of the section of outer border on the right side and bottom. This can be set at design time by double-clicking on the property. At run-time it can be set by assigning the value of a TColor variable to it.

LowCornerInnerColor:			 TColor.�

This is the color of the section of inner border on the right side and bottom. This can be set at design time by double-clicking on the property. At run-time it can be set by assigning the value of a TColor variable to it.

LowCornerInnermostColor: TColor.�

This is the color of the section of innermost border on the right side and bottom. This can be set at design time by double-clicking on the property. At run-time it can be set by assigning the value of a TColor variable to it.

HighCornerOuterColor:		 TColor.�

This is the color of the section of outer border on the left side and top. This can be set at design time by double-clicking on the property. At run-time it can be set by assigning the value of a TColor variable to it.

HighCornerInnerColor:		 TColor.�

This is the color of the section of inner border on the left side and top. This can be set at design time by double-clicking on the property. At run-time it can be set by assigning the value of a TColor variable to it.

HighCornerInnermostColor: TColor.�

This is the color of the section of innermost border on the left side and top. This can be set at design time by double-clicking on the property. At run-time it can be set by assigning the value of a TColor variable to it.

Enabled:	 Boolean.�

This property when true, causes the TTileBgnd control to tile the background each time a paint message is received by the form. When false, it ignores paint messages.

Selecting a Bitmap

To select a bitmap, simply double-click on the control. A load dialog will pop up. Select a suitable bitmap for the background and click OK. The control will resize to the bitmap’s size and everything is ready to go. The smaller the bitmap, the less run-time space and load time will be required but the longer redraws will take (measured in milliseconds).

For most cases it is important that your tiled bitmap looks like a full-sized bitmap on your runtime screen, with no seams. You can accomplish this to varying degrees of success using a good paint program. Recommended are texture fills and special-effects fills that don’t vary a great deal in color selection. To get the edges to match, use an effect such as Kai’s Seamless WelderÔ in Corel Photopaint. That’s how the sample bitmaps were created. There are many good bitmaps in the samples (and a few not so good). Experiment to get a feel for what’s right.

Keep in mind also, that different systems have different color palettes. Running the Screen Dream demo is a good example; even at 256 colors, certain parts of the program look less than satisfactory. At 16 colors, forget it! I believe 256 colors is an acceptable standard. Ensure if you resample your tile images to 256 colors (from 24 or 32 bits), that the palette used is general enough to work on any 256 color system or you’ll notice some strange effects. Having the image at 256 colors is no guarantee that it will look good on a system with a 256 color palette unless the image palette is compatible with the system palette. Most of the sample images are 16 color but some are 256 and even real-color.

Coding Concerns

When you are using a tiled background control, all controls on your forms must have their own clipping regions. Otherwise those controls won’t show. Since the Tlabel control doesn’t have its own clipping region, any Tlabel controls you use must be on a container control such as the Tpanel control. The Timage control must be placed on a Tpanel as well.

Incompatibilities

The TTileBgnd component does not work with MDI forms. It does, however, work with MDI child forms. It was not designed or tested for this use, however, but for using with standard non-mdi forms.

Technical Support

For questions about this product, problems or concerns, you can call (505) 836-1384 or (505) 264-0708 at any generally accepted working hour. If I’m not available, leave a message and I’ll resolve it as soon as possible and get back to you. You can also leave me email at jreynd@rt66.com. This is probably a better alternative. When sending e-mail, please leave me your phone number so I can call you if I need to clarify anything.

For bugs or incompatibilities in the library, I’ll try to have them resolved within 48 to 60 hours and send you a fixed replacement via an on-line service such as the Internet or CompuServe. If you have found what you believe is a bug, please write down any information about the bug that could even laughably be called pertinent. Items such as operating system and version, processor, bios, time, date, video board and version, video driver and version, bus type, mouse, mouse driver, keyboard, and anything else you can think of. Other important items to consider are other third party controls (especially VBXes) that you’re using. This will help me to solve the problem more quickly, and help you and my other customers in the process.

If you would like to know about future offerings, please send me email or mark the appropriate space on your registration sheet.. I won’t send you any demos unless you ask. But I would like to send you mail asking if you want to receive a demo, bugfix or free upgrade if available. With your permission I’ll do that. Without it, I won’t bother you.

Screen Dream™

Coding Completely Optional™

Copyright© 1995 by John Reynolds and Custom Windows Programming™

All rights reserved

Screen Dream Owner’s Manual

Copyright 1995, Custom Windows Programming

�

�

