TMsgThief Object

Copyright 1995 by John Reynolds

All Rights Reserved.

This product may not be used as part of any distributed software, package, component or otherwise, unless registered. Even if registered, it may not be sold as part of a message subclassing unit or other similar package without prior written permission from John Reynolds at Custom Windows Programming. Registration does not give users the right to distribute the source code, regardless. Under no circumstances will users be authorized to distribute source code for this object for any reason without prior written permission. Violators will be prosecuted to the fullest extent of the law. Subservient to the preceding, registered users have the right to distribute this object with their components, in executable (DCU) form or with source compiled into their object as long as that object’s source code is not distributed; royalty free.

Warning: Screen Dream customers: Do not install this package without previously backing up your Screen Dream package. If you do, you may have version errors with the MsgThief object currently on your system. When ordering, let me know you’re a Screen Dream customer; after verification you’ll receive an updated Screen Dream package with a MsgThief object matched to the package. In the meantime; you can use your current MsgThief object with this documentation as long as you don’t distribute the MsgThief object with your applications or components. Components created with the MsgThief object must have the MsgThief object distributed with them in order to work. Compiled applications automatically include the MsgThief object but need it for compilation. Screen Dream customers will receive a 30% discount off the price listed in Order.Wri.

�
Overview

The TMsgThief object allows you to create components that intercept messages and respond to them without having to write the messaging code. You simply declare the object, passing the handle at the time of declaration. At that time, the message is subclassed and an event within your control is spawned when the requested message is received. You can then change the message, declare it as handled, pass it through before or after your code is executed, or simply perform your action and allow the message to continue normally as though your code had never been executed.

Properties

MsgToWatch:	Word

Description:	The MsgToWatch property is the message you wish to respond to. You can only set this to one message. However, if you wish to respond to more than one message, see the WatchAll property.

Example:	var MsgThief: TMsgThief

	...

	MsgThief := TMsgThief.Create(Handle);

	MsgThief.MsgToWatch := WM_Paint;

	MsgThief.WatchAll := False;

	MsgThief.OnDefinedMessage := MyDefinedMessage;

Default:	0 (zero).

WatchAll: Boolean

Description:	The WatchAll property allows you to indicate whether to watch for the message defined in MsgToWatch or to watch for all messages that the window defined in the Create() argument. If WatchAll is true, all messages will be passed to the OnDefinedMessage procedure. If False, only the messages matching the MsgToWatch property will be intercepted.

Example:	var MsgThief: TMsgThief

	...

	MsgThief := TMsgThief.Create(Handle);

	MsgThief.MsgToWatch := WM_Paint;

	MsgThief.WatchAll := True;

	MsgThief.OnDefinedMessage := MyDefinedMessage;

Default:	False;

OnDefinedMessage: TMessageEvent

Description:	The OnDefinedMessage property indicates the address of the event within your component, to spawn when the desired message is received. This message is the type of the TMessageEvent defined in Delphi online help: procedure (var Msg: TMsg; var Handled: Boolean) of object; In the Tmsg type Msg, the result field is ignored. In order to use this, you would first declare the procedure:

	var MyProc: TmessageEvent;

	...

	...Then assign it to the created TMsgThief like so:

	MsgThief.OnDefinedMessage := MyProc;

	Code to respond to the message would be contained within this procedure. Keep in mind that this should be declared as a method of the component you’re creating; otherwise, you won’t have access to the properties and methods within your object.

PriorWindowsProc: LongInt

Description:	The PriorWindowsProc property gives you a LongInt representation of the address held by the previously-installed windows procedure. This is the one that will be called when your event has finished executing. As there is a method available that calls this procedure when you need to (see method PassMessageThru for more information) this will probably be of no use to you. It is read-only.

Methods

Function PassMessageThru : LongInt;

Description:	This method allows you to pass the message through to other processes before your code is executed. If used, you should probably change Handled to True in the spawned event before returning control to the TMsgThief object. This prevents the same message from being processed twice. For information on return values from this routine, see Windows API help on the CallWindowProc function.

Constructor Create (Wnd : hWnd); Virtual;

Description:	This is the constructor called when you create the object. Note that, instead of an Owner argument, it’s actually being passed a Windows handle. No attempt is made to determine whether the handle is valid or not; it is assumed that code was written to perform that before the call was made to create the object. If a Tobject is passed instead of a Windows handle, a compiler error will result. The Windows handle passed in this argument will be the one for which messages will be intercepted. If you do pass an invalid handle, it is likely that nothing will happen...absolutely nothing. If you aren’t receiving a message and you know everything is perfect, check to ensure that the handle was passed properly.

Destructor Free; Virtual;

Description:	In your new components’ destructor or sometime before, you must free this component. If you are using more than one TMsgThief object in your program, it is important to free them in reverse of their creation. For example, if you created 2 components to watch for two separate message, the second one created is the first one you are to destroy. Internal to components, you don’t have to worry: Delphi destroys them properly. But if you’re using two within one component, you must be sure to destroy them in the proper order. Additionally, keep in mind that the TMsgThief component doesn’t have an owner. You must be sure to free the component when you’re finished using it.

Sample Code

Sample code for creating a component using the TMsgThief object follows. Do not create new components derived from TMsgThief; rather, derive them from the components whose behavior you wish to emulate or change. The TMsgThief object is simply there to capture messages and give them to your component for processing. Most of my components lately have been derived from Tobject to keep resource use to a minimum. In this case, I’m deriving from the TComponent component.

unit Unit1;

interface

uses

 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,

 Controls, Forms, Dialogs, Messager;

{Messager must be in your Uses clause, and the Messager.DCU file must be in your program’s search path. A safe place to put it would be the Delphi\Lib directory.}

type

 TExampleComponent = class(TComponent)

 private

 { Private declarations }

 MsgThief : TMsgThief;

 ParentForm : TForm;

procedure MouseDMsg (var Msg: TMsg; var Handled: Boolean);

 protected

 { Protected declarations }

 public

 { Public declarations }

 Procedure Loaded; Override;

 Destructor Free; Override;

 published

 { Published declarations }

 end;

procedure Register;

implementation

procedure Register;

begin

 RegisterComponents('Samples', [ExampleComponent]);

end;

Procedure TExampleComponent.Loaded;

begin

 {Call inherited Loaded routine}

 inherited Loaded;

 {Make sure you’re not in design mode}

 if not (csDesigning in ComponentState) then

 begin

 {Get a reference to the parent form}

 ParentForm := TForm(Owner);

{Create a TMsgThief object, passing the parent form's handle as a reference}

 MsgThief := TMsgThief.Create(ParentForm.Handle);

 {Tell it to watch for the mouse down message }

 MsgThief.MsgToWatch := WM_LButtonDown;

{Tell it to spawn the MouseDMsg procedure in your component when a watched message is received}

 MouseDTh.OnDefinedMessage := MouseDMsg;

 end; {If not in design mode}

end;{of Loaded procedure}

Procedure TExampleComponent.MouseDMsg (var Msg: TMsg; var Handled: Boolean);

begin

 {If WatchAll = True, then do this:}

 If((Msg.Message = WM_Paint) or

 (Msg.Message = WM_LButtonDown)

) then

 begin

 {Your code processed here}

 {...}

 end;

 {Execute this code if you want your component's code to be processed after other responses to the message.}

 MsgThief.PassMessageThru;

 Handled := True;

 {If WatchAll = False the only time this event gets spawned is when a message matches MsgToWatch...just place code to be processed here.}

 {

 Do what you want your component to do.

 ...

 }

 {If you want this message to be ignored, make Handled = True. Otherwise, leave it alone}

 Handled := True; {Default is false: do not use this code unless you have a reason to do so. You can cause many things not to happen}

end;

Destructor TExampleComponent.free;

begin

 {Free the TMsgThief component}

 MsgThief.Free;

 {Call the original object's free method}

 Inherited Free;

end; {Of Free destructor}

end. {Of object/Component}

�
Technical Support

Technical support information is listed below. You can call at any generally accepted business hour (there’s usually someone there working). You can also leave me Email or send me a U.S. Mail letter (if you wish). Concerns will be addressed as soon as humanly possible -- I will attempt to (and usually do) fix any bugs or unfavorable situations within 60 hours from the time I hear from you.

Contact information:

John Reynolds							Jreynd@Rt66.com

Custom Windows Programming				(505) 836-1384 (office)

327 62nd St NW						(505) 264-0708 (mobile)

Albuquerque, NM 87105

