

Introduction

	The EZ Card Delphi Component streamlines smart card/reader interfaces between a MS Windows host and different card and reader products. Using the powerful object architecture of Delphi, a single component expertly handles all messages, comm port initialization, error trapping, command string formatting, analysis of return codes. Protocols specific to a card or reader type are encapsulated into “.mhr” files that are loaded in to memory via the component. Each card and/or reader requires its own mhr file. Information regarding standards for mhr files can be obtained from Strategic Analysis.�

File Inventory

MODULES

These are object files that are to be added to the Delphi component library...

SmTool.dcu		Delphi Component

SmTool.dcr

SAabout.dcu		Registration Property Editor

SAabout.dfm

SAcomnd.dcu		Command structure Property Editor

SAcomnd.dfm

SAMPLE PROGRAM

Simple program that demonstrates execution of some basic reader and card commands. Intended to provide examples of how commands are actually executed from within a program. {Also see Command Execution from within Delphi Program}

sample.dpr		Project Files

sample.opt

sample.res

sample_u.dfm		Unit form files

sample_u.pas

MHR FILES

These are the configuration files that contain data required by component for correct operation of each product...

gemp_cos.mhr		MCOS card

gemp_896.mhr		GPM896 card

ME2000.mhr		Schulmberger ME2000

litron.mhr		Litronic Argus 200 reader

gemp_rdr.mhr		Gemplus GCR400 reader

Others configuration files are currently available from Strategic Analysis for Panasonic, Solaic, Gemplus, Star Micronics and Schlumberger products.

Installation

	Within the Delphi environment choose “Install components” under “Options” menu. With the ensuing dialog box add the following modules:

SmTool.dcu

SAcomnd.dcu

SAabout.dcu

The SmTool component should now be visible on the “system page” of the component pallette.

Component Properties

About - Bring up registration dialog box

Area - Mapping information for card structure

BaudRate - Communication speed with Reader (automatically set upon choosing reader mhr file)

CardType - Identifies type of card currently used (MEM - memory card, COS - card operating system w/ file sturcture, MAG - magnetic stripe)

CommandsCard - Retreive detailed information regarding currently loaded card command data

CommandsReader -Retreive detailed information regarding currently loaded reader command data

ConfigMHR - Mechanism for loading or removing selected MHR files

DataBits - Communication protocol with Reader (automatically set upon choosing reader mhr file)

FileNameCard - Directory path information for card mhr file currently in use

FileNameReader - Directory path information for reader mhr file currently in use

Parity - Communication protocol with Reader (automatically set upon choosing reader mhr file)

Port - Comm Port used to connect the reader

RtnCode - Raw data as received from comm port buffer

RtnData - Filtered data extracted from RtnCode

StopBits - Communication protocol with Reader (automatically set upon choosing reader mhr file)

Operation

(1) 	Place the SmTool component on the selected form

(2) 	Open the Object Inspector for SmTool

(3) 	Goto the property “ConfigMHR” - choose “Load” from the dropdown box

(4) 	Select the desired reader mhr file from the dialog box prompt

(5) 	Repeat steps 3 and 4 to load the desired card mhr file

(6) The “CommandsCard” and CommandsReader” properites can now be activated to display details of the respective command groupings including expected formats for each command {Also see Command Structure}

Command Structure	

	Each command (reader or card) that is loaded into the SmTool component has the following attributes as read from its MHR file:

Name: Identifying referencence

Instruction: Actual sequence of bytes that formulate the command {Also see Instruction Format}

Response Time: Time in milliseconds that host should wait for response

Response Length: Expected length of response data to be received by host. This is in addition to the normal return codes and error checks. Many commands like writing to a file and turning off a reader produce no reponse (i.e. Response Length = 0). Commands lacking a predetermined response, example reading a file, will have a Response Length = Open.

Errors1-8: Possible errors, unique to this specific command, that may be encountered during execution. Up to eight separate unique errors can be stored for each command.

Instruction Format

	The Instruction is the sequence of hexadecimal bytes that is sent to the reader/card. In many instances the Instruction command will contain placeholders for additional information that must be added by the Delphi program. For example, consider the command named “CrdPresentCode.” The Gemplus COS card representation is:

 Instruction=00 20 00 xnum 08 zcode

where xnum represents the number of the secret code to be presented and zcode represents the actual code. Placeholder prefaced with the letter “x” pass their value as a hex. Placeholders prefaced with the letter “z” pass their actual character value. When the above instruction is called with the additional parameters “1” and “usercode” the component appends the hex representation of bytes to:

00 20 00 01 08 75 73 65 72 63 6F 64 65

Execution from within Delphi Program

1. Send Command

Using the ExecuteCommand followed by a list of parameter strings seperated by commas and enclosed in brackets. The first string will be the name of the command to be executed. If additional parameters are expected than they follow in order each enclosed in quotes and seperated by commas. Examples..

To send the command that turns the Litronic reader LED on::

SmTool1.ExecuteCommand([‘RdrLightOn’]);

To send the command that checks secret code one:

SmTool1.ExecuteCommand([‘CrdPresentCode’, ‘1’, ‘usercode’]);

{Also see Instruction Format}

2. Check Response

Two component properties hold the response information:

1. RtnCode: Unfiltered response string of hex values as received through the comm port

2. RtnData: Further component analysis on RtnCode includes checking for errors and extracting any reponse data. RtnData, therefore, will contain one of the following values:

Error Message if the command was not properly executed

Response data if the command was executed and the Response Length <> 0

“ok” if the command was executed and Response Length = 0

The Delphi program should check these two properties after each command in order to retreive important execution and response information.

