�
Delphi™ for Windows
Copyright © 1983-1995 Borland® International, Inc.

� Delphi Component : Optimized Script Support API
DCOSSAPI.DCU & BPOSSAPI.DLL Copyright © 1995, Greg Truesdell
All Rights Reserved Worldwide

DCossAPI.DCU is a Delphi component wrapper for the optimized script support library in BPossAPI.DLL. This library includes the following integrated functions:

• Text and language parsers
• Keyword/token definition and recognition
• Symbol table (variable) definition and recognition
• Symbol-aware expression evaluators

The library originally designed for Visual Basic� was modified for Borland Pascal, then enhanced for Delphi. The component TScriptParser was then built to wrap around the DLL interface.

� You can contact me at any of the following locations:
CompuServe ID	74131,2175
Internet Address	74131.2175@compuserve.com
Surface Mail		Ste. 308 - 633 North Road, Coquitlam BC, CANADA, V3J 1P3

� Neither Greg Truesdell or DCOSSAPI are directly associated with Borland International, Inc.
�Table of Contents� TOC \o "1-3" �
Table of Contents	� GOTOBUTTON _Toc338904033 � PAGEREF _Toc338904033 �2��
Figures	� GOTOBUTTON _Toc338904034 � PAGEREF _Toc338904034 �5��
Tables	� GOTOBUTTON _Toc338904035 � PAGEREF _Toc338904035 �5��
Introduction	� GOTOBUTTON _Toc338904036 � PAGEREF _Toc338904036 �6��
The Beta Test Program	� GOTOBUTTON _Toc338904037 � PAGEREF _Toc338904037 �7��
Responsibilities and Advantages	� GOTOBUTTON _Toc338904038 � PAGEREF _Toc338904038 �7��
Registration	� GOTOBUTTON _Toc338904039 � PAGEREF _Toc338904039 �7��
The Sample Package	� GOTOBUTTON _Toc338904040 � PAGEREF _Toc338904040 �7��
Getting Started	� GOTOBUTTON _Toc338904041 � PAGEREF _Toc338904041 �8��
Installing DCossAPI on your Hard Disk	� GOTOBUTTON _Toc338904042 � PAGEREF _Toc338904042 �8��
Adding �TScriptParser to DELPHI	� GOTOBUTTON _Toc338904043 � PAGEREF _Toc338904043 �8��
Adding �TScriptParser to your Project	� GOTOBUTTON _Toc338904044 � PAGEREF _Toc338904044 �8��
First Look - Properties, Events and Methods	� GOTOBUTTON _Toc338904045 � PAGEREF _Toc338904045 �9��
Properties	� GOTOBUTTON _Toc338904046 � PAGEREF _Toc338904046 �9��
Runtime Properties	� GOTOBUTTON _Toc338904047 � PAGEREF _Toc338904047 �11��
Events	� GOTOBUTTON _Toc338904048 � PAGEREF _Toc338904048 �11��
Methods	� GOTOBUTTON _Toc338904049 � PAGEREF _Toc338904049 �13��
Constants Reference	� GOTOBUTTON _Toc338904050 � PAGEREF _Toc338904050 �14��
Constants defined in DCOSSAPI.DCU	� GOTOBUTTON _Toc338904051 � PAGEREF _Toc338904051 �14��
Limitations	� GOTOBUTTON _Toc338904052 � PAGEREF _Toc338904052 �14��
AddKeyword and Set/AddVariable Error Codes	� GOTOBUTTON _Toc338904053 � PAGEREF _Toc338904053 �14��
NextToken Error Codes	� GOTOBUTTON _Toc338904054 � PAGEREF _Toc338904054 �15��
Expression Evaluation Error Codes	� GOTOBUTTON _Toc338904055 � PAGEREF _Toc338904055 �15��
Variable Types	� GOTOBUTTON _Toc338904056 � PAGEREF _Toc338904056 �16��
Operator Character Tokens	� GOTOBUTTON _Toc338904057 � PAGEREF _Toc338904057 �16��
Exceptions	� GOTOBUTTON _Toc338904058 � PAGEREF _Toc338904058 �17��
Introduction	� GOTOBUTTON _Toc338904059 � PAGEREF _Toc338904059 �17��
Exception Types	� GOTOBUTTON _Toc338904060 � PAGEREF _Toc338904060 �17��
EInvalidToken	� GOTOBUTTON _Toc338904061 � PAGEREF _Toc338904061 �17��
ENoKeywords	� GOTOBUTTON _Toc338904062 � PAGEREF _Toc338904062 �17��
ENoText	� GOTOBUTTON _Toc338904063 � PAGEREF _Toc338904063 �17��
EInvalidVariable	� GOTOBUTTON _Toc338904064 � PAGEREF _Toc338904064 �17��
ENotExecuting	� GOTOBUTTON _Toc338904065 � PAGEREF _Toc338904065 �17��
EInvalidLine	� GOTOBUTTON _Toc338904066 � PAGEREF _Toc338904066 �17��
Event Handler Reference	� GOTOBUTTON _Toc338904067 � PAGEREF _Toc338904067 �18��
Event Types	� GOTOBUTTON _Toc338904068 � PAGEREF _Toc338904068 �18��
TCancelEvent	� GOTOBUTTON _Toc338904069 � PAGEREF _Toc338904069 �18��
TErrorEvent	� GOTOBUTTON _Toc338904070 � PAGEREF _Toc338904070 �18��
TNewLineEvent	� GOTOBUTTON _Toc338904071 � PAGEREF _Toc338904071 �18��
TLineEvent	� GOTOBUTTON _Toc338904072 � PAGEREF _Toc338904072 �18��
TNumExprEvent	� GOTOBUTTON _Toc338904073 � PAGEREF _Toc338904073 �18��
TStrExprEvent	� GOTOBUTTON _Toc338904074 � PAGEREF _Toc338904074 �18��
Parsing Events	� GOTOBUTTON _Toc338904075 � PAGEREF _Toc338904075 �19��
OnAlphaParse	� GOTOBUTTON _Toc338904076 � PAGEREF _Toc338904076 �19��
OnNextParse	� GOTOBUTTON _Toc338904077 � PAGEREF _Toc338904077 �19��
OnProcedure (not yet implemented)	� GOTOBUTTON _Toc338904078 � PAGEREF _Toc338904078 �20��
OnTypedVar	� GOTOBUTTON _Toc338904079 � PAGEREF _Toc338904079 �20��
Error Events	� GOTOBUTTON _Toc338904080 � PAGEREF _Toc338904080 �21��
OnBadToken	� GOTOBUTTON _Toc338904081 � PAGEREF _Toc338904081 �21��
OnError	� GOTOBUTTON _Toc338904082 � PAGEREF _Toc338904082 �21��
Text Events	� GOTOBUTTON _Toc338904083 � PAGEREF _Toc338904083 �22��
OnEndOfLine	� GOTOBUTTON _Toc338904084 � PAGEREF _Toc338904084 �22��
OnEndOfText	� GOTOBUTTON _Toc338904085 � PAGEREF _Toc338904085 �22��
OnNewLine	� GOTOBUTTON _Toc338904086 � PAGEREF _Toc338904086 �22��
Expression Evaluation Events	� GOTOBUTTON _Toc338904087 � PAGEREF _Toc338904087 �23��
OnEnterStrExpr	� GOTOBUTTON _Toc338904088 � PAGEREF _Toc338904088 �23��
OnNumExprLoop (Formerly OnEnterNumExpr)	� GOTOBUTTON _Toc338904089 � PAGEREF _Toc338904089 �23��
OnStrExprLoop	� GOTOBUTTON _Toc338904090 � PAGEREF _Toc338904090 �24��
Method Reference	� GOTOBUTTON _Toc338904091 � PAGEREF _Toc338904091 �25��
Token/Keyword Parsing Methods	� GOTOBUTTON _Toc338904092 � PAGEREF _Toc338904092 �25��
IsKeyword	� GOTOBUTTON _Toc338904093 � PAGEREF _Toc338904093 �25��
IsToken	� GOTOBUTTON _Toc338904094 � PAGEREF _Toc338904094 �25��
LocateKeyword	� GOTOBUTTON _Toc338904095 � PAGEREF _Toc338904095 �25��
LocateTextAt	� GOTOBUTTON _Toc338904096 � PAGEREF _Toc338904096 �25��
NextToken	� GOTOBUTTON _Toc338904097 � PAGEREF _Toc338904097 �25��
ParseWhileIn	� GOTOBUTTON _Toc338904098 � PAGEREF _Toc338904098 �26��
PeekNextToken	� GOTOBUTTON _Toc338904099 � PAGEREF _Toc338904099 �26��
TokenInSetOf	� GOTOBUTTON _Toc338904100 � PAGEREF _Toc338904100 �26��
Numeric and String Evaluation Methods	� GOTOBUTTON _Toc338904101 � PAGEREF _Toc338904101 �27��
Evaluate	� GOTOBUTTON _Toc338904102 � PAGEREF _Toc338904102 �27��
EvalNumeric	� GOTOBUTTON _Toc338904103 � PAGEREF _Toc338904103 �27��
EvalString	� GOTOBUTTON _Toc338904104 � PAGEREF _Toc338904104 �27��
TestNumExpr	� GOTOBUTTON _Toc338904105 � PAGEREF _Toc338904105 �27��
Variable Related Methods	� GOTOBUTTON _Toc338904106 � PAGEREF _Toc338904106 �28��
AddVariable	� GOTOBUTTON _Toc338904107 � PAGEREF _Toc338904107 �28��
GetVariable	� GOTOBUTTON _Toc338904108 � PAGEREF _Toc338904108 �28��
PeekVariable	� GOTOBUTTON _Toc338904109 � PAGEREF _Toc338904109 �28��
SetVariable	� GOTOBUTTON _Toc338904110 � PAGEREF _Toc338904110 �29��
VariableCount	� GOTOBUTTON _Toc338904111 � PAGEREF _Toc338904111 �29��
ZapVariables	� GOTOBUTTON _Toc338904112 � PAGEREF _Toc338904112 �29��
Keyword Definition Methods	� GOTOBUTTON _Toc338904113 � PAGEREF _Toc338904113 �30��
AddKeyword	� GOTOBUTTON _Toc338904114 � PAGEREF _Toc338904114 �30��
GetKeyword	� GOTOBUTTON _Toc338904115 � PAGEREF _Toc338904115 �30��
GetKeywordToken	� GOTOBUTTON _Toc338904116 � PAGEREF _Toc338904116 �30��
GetTokenKeyword	� GOTOBUTTON _Toc338904117 � PAGEREF _Toc338904117 �30��
KeywordCount	� GOTOBUTTON _Toc338904118 � PAGEREF _Toc338904118 �31��
LoadKeywords	� GOTOBUTTON _Toc338904119 � PAGEREF _Toc338904119 �31��
NT_CodeString	� GOTOBUTTON _Toc338904120 � PAGEREF _Toc338904120 �31��
SaveKeywords	� GOTOBUTTON _Toc338904121 � PAGEREF _Toc338904121 �31��
ZapKeywords	� GOTOBUTTON _Toc338904122 � PAGEREF _Toc338904122 �31��
Special Utility Methods	� GOTOBUTTON _Toc338904123 � PAGEREF _Toc338904123 �32��
DefTokenDelims	� GOTOBUTTON _Toc338904124 � PAGEREF _Toc338904124 �32��
NT_Operators	� GOTOBUTTON _Toc338904125 � PAGEREF _Toc338904125 �32��
Label Methods	� GOTOBUTTON _Toc338904126 � PAGEREF _Toc338904126 �33��
AddLabel	� GOTOBUTTON _Toc338904127 � PAGEREF _Toc338904127 �33��
GotoLabel	� GOTOBUTTON _Toc338904128 � PAGEREF _Toc338904128 �33��
ScanForLabels	� GOTOBUTTON _Toc338904129 � PAGEREF _Toc338904129 �33��
String and Numeric Function Registration Methods	� GOTOBUTTON _Toc338904130 � PAGEREF _Toc338904130 �34��
RegisterFunction	� GOTOBUTTON _Toc338904131 � PAGEREF _Toc338904131 �34��
RegisterNumeric	� GOTOBUTTON _Toc338904132 � PAGEREF _Toc338904132 �34��
Copyright Information	� GOTOBUTTON _Toc338904133 � PAGEREF _Toc338904133 �35��
Index	� GOTOBUTTON _Toc338904134 � PAGEREF _Toc338904134 �36��
��Figures� TOC \c "Figure" �
Figure 1 - DCOSSAPI and BPOSSAPI	� GOTOBUTTON _Toc335375944 � PAGEREF _Toc335375944 �6��
Figure 2 - Object Inspector View of Properties	� GOTOBUTTON _Toc335375945 � PAGEREF _Toc335375945 �9��
Figure 3 - Object Inspector View of Events	� GOTOBUTTON _Toc335375946 � PAGEREF _Toc335375946 �11��
Figure 4 - Sample Application Screen Snapshot	� GOTOBUTTON _Toc335375947 � PAGEREF _Toc335375947 �14��
�Tables� TOC \c "Table" �
Table 1 - Visible Properties	� GOTOBUTTON _Toc335375958 � PAGEREF _Toc335375958 �9��
Table 2 - Runtime Properties	� GOTOBUTTON _Toc335375959 � PAGEREF _Toc335375959 �11��
Table 3 - Event Descriptions	� GOTOBUTTON _Toc335375960 � PAGEREF _Toc335375960 �12��
Table 4 - Browser Method Listing	� GOTOBUTTON _Toc335375961 � PAGEREF _Toc335375961 �13��
Table 5 - Limitation Constants	� GOTOBUTTON _Toc335375962 � PAGEREF _Toc335375962 �16��
Table 6 - AKW Error Code Constants	� GOTOBUTTON _Toc335375963 � PAGEREF _Toc335375963 �16��
Table 7 - NextToken Event and Error Codes	� GOTOBUTTON _Toc335375964 � PAGEREF _Toc335375964 �17��
Table 8 - Expression Evaluation Error Codes	� GOTOBUTTON _Toc335375965 � PAGEREF _Toc335375965 �17��
Table 9 - Variable Types	� GOTOBUTTON _Toc335375966 � PAGEREF _Toc335375966 �18��
Table 10 - Operator Character Codes	� GOTOBUTTON _Toc335375967 � PAGEREF _Toc335375967 �18��
Table 11 - OnEnterStrExpr Passed Arguments	� GOTOBUTTON _Toc335375968 � PAGEREF _Toc335375968 �25��
Table 12 - OnNumExprLoop Passed Arguments	� GOTOBUTTON _Toc335375969 � PAGEREF _Toc335375969 �25��
Table 13 - OnStrExprLoop Passed Arguments	� GOTOBUTTON _Toc335375970 � PAGEREF _Toc335375970 �26��
Table 14 - AddVariable Constants	� GOTOBUTTON _Toc335375971 � PAGEREF _Toc335375971 �30��
��Introduction

From time to time a programmer wishes to provide a scripting language to accompany the program under development. It may be a communications, word processing, database access or other program. Building a fair scripting language can be quite a chore ... a project all by itself. In my business I have been called to do this a number of times, recreating the wheel over and over in different languages. Eventially it occured to me to build a scripting library into a DLL that could be used by a number of languages. This project became VBOSSAPI�XE "VBOSSAPI"�.DLL; a DLL designed specifically for Visual Basic. With minimal effort it was modified for Borland Pascal, and now Delphi.

Although I had considered wrapping the DLL in a VBX for Visual Basic, I never got around to needing call back capabilities in my Visual Basic projects. Then along came Delphi. I had begun a new application for an SQL server and needed a batching language. Since VBOSSAPI.DLL was written in Borland Pascal 7, it seemed like a logical step to build a component for Delphi. And, of course, I was being prodded by a few people who said they would really like a Delphi component version of VBOSSAPI.DLL.

The component project (now called DCOSSAPI�XE "DCOSSAPI"�) has now reached the point (after much testing and experimenting) that I can consider offering it to you as a Beta Test product.

The following diagram shows the relationship between the DLL and the component DCU;

�
Figure � SEQ Figure * ARABIC �1� - DCOSSAPI and BPOSSAPI

The library BPOSSAPI.DLL contains the functions and procedures that comprise the parsers, expression evaluators, variable symbol table and Token/Keyword databases. The component library DCOSSAPI.DCU contains the TScriptParser �XE "TScriptParser "��XE "TScriptParser " \b�components properties, events, procedures and constants.

In this document I hope to provide enough information for you to evaluate and beta test the TScriptParser component. In the fullness of time I will provide a Windows Help file linked appropriately to the Delphi visual development environment.

�The Beta Test Program
Responsibilities and Advantages

By joining in on the Beta Test program for DCOSSAPI you will receive a number of advantages. In return I hope that you will stay in communication with me concerning problems, enhancement requests and submissions.

For the duration of the Beta Test program, I will be keeping in touch with you (and you with me) via E-Mail. Updates will be posted regularly via the CompuServe Delphi Forum. When you register you will receive a Beta Testers Password that you must use to UNZIP the update archives. After the Beta Test program is complete, you will receive the complete package registered to you from the day I send it to you. This means your one year free updates and technical assistance will begin on that day.

The more you participate, the better the product becomes. Beta Testers will also be offered the complete component source code at an attractively low price. It will become available shortly after the product is put into general release. I have no immediate plans for releasing the source code for the DLL. However, much of the magic has been imbedded into the component.

Registration

The Beta Test program price is US$49 complete (no shipping and handling charges.) The general release version of the product is expected to be priced between US$70 and US$100. By joining the program and helping me to improve the product you get the special price and the special attention.

If you are interested in joining then GO SWREG and search for SWREG# 6983 on CompuServe.

The Sample Package

Note: These instructions are for the Sample Package Only!

The Sample Package is a ZIP file named BETAOSS.ZIP. The contents of the ZIP file should be placed in a single directory, then copy the BPOSSAPI.DLL file to your Windows\System directory. The complete and compile-able source for the sample application is included. However, the sample package displays a shareware message when the project is loaded, and when the program is executed. The sample copy of DCossAPI’s evaluation period will expire at a pre-defined date. If it expires, you have probably been evaluating the component long enough. The component will also only operate while Delphi is loaded. The help file TSCRDEMO.HLP is also included. It describes the language implemented in the sample program.
�Getting Started

Installing DCossAPI on your Hard Disk

Note: These instructions are for the Beta Test Package Only!

The entire DCossAPI package is distributed in a single ZIP archive. To install DCossAPI you should create a new directory (say ... C:\DCOSSAPI) and unzip the archive into that directory. You will need to use the PKUNZIP �XE "PKUNZIP "�-d DCOSSREG command to create the sub directory structure stored in the archive. Once completed you should have the directory structure below:

C:\DCOSSAPI			Root Directory
C:\DCOSSAPI\DOC		Documents etc.
C:\DCOSSAPI\EXAMPLES	The sample application(s)
C:\DCOSSAPI\LIB		PAS, DCR, DCU and DLL files

Next, copy the BPOSSAPI.DLL file to your WINDOWS\SYSTEM directory.

During the Beta Test program, it's a good idea to retain this directory structure as new updates to registered Beta Testers will place updated files in appropriate (or even new) directories. Some sample programs may depend on a certain structure.

Adding �TScriptParser to DELPHI

Assuming that you want to add this component to your currently selected component library, use the following list as a guide to adding this component (you can, of course, ignore this whole section if it is obvious to you.) For purposes of clarity I am assuming that the base directory is C:\DCOSSAPI.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Select Options|Install Components�XE "Options|Install Components"�... from the Delphi main menu.
�SYMBOL 183 \f "Symbol" \s 10 \h�	Under Search Path: append the DCOSSAPI library directory (C:\DCOSSAPI\LIB)
�SYMBOL 183 \f "Symbol" \s 10 \h�	Press the Add button and under Module Name: type C:\DCOSSAPI\LIB\REGSCRIPT.DCU or use the Browse button to locate the DCU file.
�SYMBOL 183 \f "Symbol" \s 10 \h�	Select the OK button, then the OK button on the next dialog and away you go. The TScriptParser and TBasicInterpreter icons will be added to the Script group.

�SYMBOL 183 \f "Symbol" \s 10 \h�	If you cannot install the component, then please send me an E-Mail message describing the problem and I will investigate.

Adding �TScriptParser to your Project

You only need to add TScriptParser to your project once. The DLL knows only which application owns it. Any number of applications can access the DLL, but any additional instances of TScriptParser in a single application will assume the same Keyword/Token database and Symbol Table. It can lead to confusion if you add the component to a project more than once.

�First Look - Properties, Events and Methods

Properties�XE "Properties"�

Here, in Figure 2, is a snapshot of the Object Inspector entries for TScriptParser. The Beta Test version includes ten properties. Strictly speaking, not all properties that are accessible during execution are listed here. But this is a good place to start.

�
Figure � SEQ Figure * ARABIC �2� - Object Inspector View of Properties

Then ten properties are defined in Table 1 below:

Table � SEQ Table * ARABIC �1� - Visible Properties
PROPERTY�TYPE�DESCRIPTION��About�String�Copyright Message��AlphaParse�Boolean�When set to TRUE, this property changes the parsing engine’s default context from multiple-character keywords to single characters. Any alphabetic character will activate the OnAlphaParse event instead of the OnNextParse event.���XE "CurrentIndex"�CurrentIndex�Integer�Contains the current line index (character position within the line). Usually points to the next character after the keyword.��CurrentLine�XE "CurrentLine"��Integer�Contains the current line number.��Exceptions�XE "Exceptions"��Boolean�This toggle is used to enable (true) or disable (false) the generation of exceptions during parsing.
When set False, you must check for errors yourself.
When set True, TScriptParser will generate an exception if an error occurs.��Execute�XE "Execute"��Boolean�Use Execute := True to start parsing the script.
Use Execute := False to stop parsing the script.��KeyWord�XE "KeyWord"��String�The current KeyWord text.��Keywords�XE "Keywords"��TStrings�Contains the list of keywords to assign when the script is executed.��Name�XE "Name"��String�Name of the control (TComponent)��Tag�XE "Tag"��LongInt�Not used (TComponent)��Text�XE "Text"��TStrings�Script to execute.��Token�XE "Token"��Integer�Current Token value of KeyWord.��Version�String�Current version of the Component��
�Runtime Properties

In general, these properties only have meaning after NextParse is called or the OnNextParse event.

Table � SEQ Table * ARABIC �2� - Runtime Properties
PROPERTY�TYPE�DESCRIPTION���XE "AsFloat"�AsFloat�Extended�Returns the current keyword as a float value.���XE "AsInteger"�AsInteger�LongInt�Returns the current keyword as a long integer value.���XE "AsString"�AsString�String�Returns the current keyword as a string.���XE "AsVarType"�AsVarType�Integer�Returns the current keyword's variable type.���XE "LineText"�LineText�String�Returns the entire current line's text.��
Events�XE "Events"�

Below are the Object Inspector Event entries for TScriptParser. This picture was taken from the sample project included with the package.

�
Figure � SEQ Figure * ARABIC �3� - Object Inspector View of Events

�The following table describes the set of events available once the Execute property is set on. Note that BOLD indicates primary events, NORMAL indicates support events and ITALICS indicates under construction.

Table � SEQ Table * ARABIC �3� - Event Descriptions
EVENT�DESCRIPTION��OnBadToken�XE "OnBadToken"��Occurs when a unrecognized token is encountered.���XE "OnEndOfLine"�OnEndOfLine�Triggered when the end of a line is reached.���XE "OnEndOfText"�OnEndOfText�Triggered when the end of the script is encountered.���XE "OnEnterStrExpr"�OnEnterStrExpr�This event is triggered whenever a string expression is encountered. OnEnter* events occur before the expression is evaluated. This allows the programmer to define special behaviors and string functions. See RegisterFunction�XE "RegisterNumeric"�().���XE "OnError"�OnError�Triggered by most errors.���XE "OnNewLine"�OnNewLine�Occurs whenever a new line is encountered.���XE "OnNextParse"�OnNextParse�This is the main workhorse event. Once started, the parsing engine activates this event each time a new element is parsed.���XE "OnEnterNumExpr"�OnNumExprLoop�This event is triggered whenever a numeric expression is encountered. In this event's handler the programmer can add and intercept special numeric functions or constants. See RegisterNumeric()���XE "OnProcedure"�OnProcedure�Triggered when a Token of type NT_PROCEDURE is encountered. Currently under construction.���XE "OnStrExprLoop"�OnStrExprLoop�This event is special to string evaluation. Strings can be concatenated using the '+' operator. As the string evaluation parser is parsing the expression, this event is called to allow the programmer to define special behaviors and string functions. See RegisterFunction�XE "RegisterFunction"�().���XE "OnTypedVar"�OnTypedVar�This event is called whenever a Typed Variable (string, integer, float) is encountered. It's primary use is to allow the programmer to handle 'free floating' variable equates. (i.e. Title = "My First Book").���Methods�XE "Methods"�

The following table is a snapshot of the contents of Delphi's Symbol Browser for TScriptParser. It is a complete listing of all public methods available:

Table � SEQ Table * ARABIC �4� - Browser Method Listing
�
�

Each method will be covered in more detail in the reference section of this document. Methods are provided for the following purposes:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Keyword definition, loading and saving, locating in the text, testing and parsing.
�SYMBOL 183 \f "Symbol" \s 10 \h�	Token testing, registration, decoding and parsing.
�SYMBOL 183 \f "Symbol" \s 10 \h�	Variable definition, setting and getting, counting and evaluating.
�SYMBOL 183 \f "Symbol" \s 10 \h�	Numeric and String expression evaluation.
�SYMBOL 183 \f "Symbol" \s 10 \h�	Label detecting and branching.
�SYMBOL 183 \f "Symbol" \s 10 \h�	Housekeeping.

�Constants Reference
Constants defined in DCOSSAPI.DCU

The following charts detail the constants exported by the DCOSSAPI.DCU library.

Limitations
Table � SEQ Table * ARABIC �5� - Limitation Constants
CONSTANT�VALUE�DESCRIPTION��MAX_KEYWORD_LEN�XE "MAX_KEYWORD_LEN"��16�Maximum length of a keyword.��MAX_KEYWORDS�XE "MAX_KEYWORDS"��256�Maximum number of keyword definitions.��MAX_VARIABLES�XE "MAX_VARIABLES"��128�Maximum number of variables (less any labels)��MAX_SCRIPTS�XE "MAX_SCRIPTS"��16�Maximum number of simultaneous applications.��

AddKeyword and Set/AddVariable Error Codes

AddKeyword, SetVariable and AddVariable return error codes if an error occurs. Normally these functions will return 0 if successful.

Table � SEQ Table * ARABIC �6� - AKW Error Code Constants
CONSTANT�VALUE�DESCRIPTION��AKW_NO_MORE_ROOM�XE "AKW_NO_MORE_ROOM"��-1�Token/Keyword database full.���XE "AKW_INVALID_CHAR"�AKW_INVALID_CHAR�-2�An attempt to include an invalid character in the keyword was detected.���XE "AKW_DUPLICATE_KEYWORD"�AKW_DUPLICATE_KEYWORD�-3�Keyword already exists.���XE "AKW_KEYWORD_TOO_LONG"�AKW_KEYWORD_TOO_LONG�-4�Keyword was greater that MAX_KEYWORD_LEN characters long.���XE "AKW_INVALID_TOKEN"�AKW_INVALID_TOKEN�-5�Token value assigned is invalid.���XE "AKW_TYPE_MISMATCH"�AKW_TYPE_MISMATCH�-6�Returned by Set/AddVariable if the data type is incompatible.���XE "AKW_OVERFLOW"�AKW_OVERFLOW�-7�Returned by Set/AddVariable if the data value has overflowed the variable.���
NextToken Error Codes

Some of the error codes below are not currently useful but will be implemented later. These are indicated in ITALICS.

Table � SEQ Table * ARABIC �7� - NextToken Event and Error Codes
CONSTANT�VALUE�DESCRIPTION���XE "NT_PAST_EOF"�NT_PAST_EOF�-1�Reached end of the text.���XE "NT_NO_KEYWORDS"�NT_NO_KEYWORDS�-2�Attempt to run the script without defining any Keywords.���XE "NT_TOKEN_NOTFOUND"�NT_TOKEN_NOTFOUND�-3�Current keyword is not a recognized token.���XE "NT_NO_FREE_MEMORY"�NT_NO_FREE_MEMORY�-4�Not enough memory to complete current function.���XE "NT_VARIABLE_FOUND"�NT_VARIABLE_FOUND�-5�A variable was encountered.���XE "NT_LABEL_FOUND"�NT_LABEL_FOUND�-6�A Label was encountered.���XE "NT_FUNCTION"�NT_FUNCTION�-7�A Function was encountered.���XE "NT_PROCEDURE"�NT_PROCEDURE�-8�A Procedure was encountered.���XE "NT_NUMERIC_CONSTANT"�NT_NUMERIC_CONSTANT�-9�The current Keyword is a numeric constant.���XE "NT_STRING_CONSTANT"�NT_STRING_CONSTANT�-10�The current Keyword is a string constant.���XE "NT_MATH_FUNCTION"�NT_MATH_FUNCTION�-11�A registered math function was encountered.��
Expression Evaluation Error Codes

These codes are returned by the expression evaluator when an error occurs. The constants displayed in ITALICS are generally used internally. It should also be noted that TScriptParser translates these errors into text for you.

Table � SEQ Table * ARABIC �8� - Expression Evaluation Error Codes
CONSTANT�VALUE�DESCRIPTION���XE "EXPR_EXTERNAL_CALL"�EXPR_EXTERNAL_CALL�-1�A registered external call was made.���XE "EXPR_SYNTAX_ERROR"�EXPR_SYNTAX_ERROR�1�Syntax error.���XE "EXPR_PARAMETER_MISSING"�EXPR_PARAMETER_MISSING�2�A parameter was missing in an internal function.���XE "EXPR_PARAMETER_COUNT_ERROR"�EXPR_PARAMETER_COUNT_ERROR�3�Wrong number of parameters passed in an internal function.���XE "EXPR_INVALID_PARAMETER"�EXPR_INVALID_PARAMETER�4�Parameter type is invalid.���XE "EXPR_OVERFLOW"�EXPR_OVERFLOW�5�Numeric expression resulted in an overflow.���XE "EXPR_COMMA_MISSING"�EXPR_COMMA_MISSING�6�A comma was missing in a function call.���XE "EXPR_MISSING_RPAREN"�EXPR_MISSING_RPAREN�7�')' missing.���XE "EXPR_TYPE_MISMATCH"�EXPR_TYPE_MISMATCH�8�Parameter passed was not the right type.���XE "EXPR_INVALID_IDENTIFIER"�EXPR_INVALID_IDENTIFIER�9�Invalid identifier.���XE "EXPR_PARAMETERS_NOT_ALLOWED"�EXPR_PARAMETERS_NOT_ALLOWED�10�A function requiring no parameters was passed parameters.���XE "EXPR_EXPECTED_FACTOR"�EXPR_EXPECTED_FACTOR�11�A Factor was expected. (*/)���XE "EXPR_EXPECTED_TERM"�EXPR_EXPECTED_TERM�12�A Term was expected. (+-)���XE "EXPR_EXPECTED_EXPRESSION"�EXPR_EXPECTED_EXPRESSION�13�An expression was expected.���XE "EXPR_ZERO_DIVIDE"�EXPR_ZERO_DIVIDE�14�Divide by Zero error.���XE "EXPR_OUT_OF_MEMORY"�EXPR_OUT_OF_MEMORY�15�Out of memory.���XE "EXPR_GARBAGE_FOLLOWS"�EXPR_GARBAGE_FOLLOWS�16�The expression was not terminated properly.���XE "EXPR_VARIABLE_EQUATE_ERROR"�EXPR_VARIABLE_EQUATE_ERROR�17�Internal variable equate error.���XE "EXPR_INVALID_VAR_OR_FUNC"�EXPR_INVALID_VAR_OR_FUNC�18�Invalid internal function or variable encountered.��
�Variable Types

The following values are passed to and returned by various methods:

Table � SEQ Table * ARABIC �9� - Variable Types
CONSTANT�VALUE�DESCRIPTION���XE "VNONE"�VNONE�0�Undefined.���XE "VSTRING"�VSTRING�1�A 0..255 character string.���XE "VINTEGER"��XE "VINTEGER"�VINTEGER�2�A Long Integer value.���XE "VFLOAT"�VFLOAT�3�An Extended decimal value.���XE "VPROCEDURE"�VPROCEDURE�4�A Procedure.���XE "VFUNCTION"�VFUNCTION�5�A Function.���XE "VLABEL"�VLABEL�6�A Label.��
Operator Character Tokens

Operator tokens are token values returned by the Keyword/Token parser when an operator is encountered. You should note, however, that some parsing functions will absorb certain operators. For example: string constants absorb the leading and trailing " and ' characters.

Table � SEQ Table * ARABIC �10� - Operator Character Codes
CONSTANT�TOKEN�CHARACTER���XE "NT_PLUS"�NT_PLUS�1�+���XE "NT_MINUS"�NT_MINUS�2�-���XE "NT_TIMES"�NT_TIMES�3�*���XE "NT_DIVIDE"�NT_DIVIDE�4�/���XE "NT_DBL_QUOTE"�NT_DBL_QUOTE�5�"���XE "NT_SNG_QUOTE"�NT_SNG_QUOTE�6�'���XE "NT_SEMICOLON"�NT_SEMICOLON�7�;���XE "NT_COLON"�NT_COLON�8�:���XE "NT_LEFTBRACKET"�NT_LEFTBRACKET�9�[���XE "NT_RIGHTBRACKET"�NT_RIGHTBRACKET�10�]���XE "NT_LEFTBRACE"�NT_LEFTBRACE�11�{���XE "NT_RIGHTBRACE"�NT_RIGHTBRACE�12�}���XE "NT_LEFTPAREN"�NT_LEFTPAREN�13�(���XE "NT_RIGHTPAREN"�NT_RIGHTPAREN�14�)���XE "NT_EXCLAMATION"�NT_EXCLAMATION�15�!���XE "NT_AT"�NT_AT�16�@���XE "NT_POUND"�NT_POUND�17�#���XE "NT_DOLLAR"�NT_DOLLAR�18�$���XE "NT_PERCENT"�NT_PERCENT�19�%���XE "NT_CARET"�NT_CARET�20�^���XE "NT_AMPERSAND"�NT_AMPERSAND�21�&���XE "NT_EQUAL"�NT_EQUAL�22�=���XE "NT_LESSTHAN"�NT_LESSTHAN�23�<���XE "NT_GREATERTHAN"�NT_GREATERTHAN�24�>���XE "NT_COMMA"�NT_COMMA�25�,���Exceptions
Introduction

When the Exceptions property is set to TRUE, the parser will respond to some errors by generating an exception. I have decided to make this optional since, at times, generating exceptions is undesireable.

Exception Types

All exceptions are decendants of Class(Exception).

EInvalidToken� XE "EInvalidToken" �
Raised when an invalid token is encountered by the parser.

�XE "EInvalidToken"�ENoKeywords
Raised when the Execute �XE "Execute "�property is set to TRUE and there are no keywords defined in the keyword database.

�XE "ENoKeywords"�ENoText
Raised when the Execute �XE "Execute "��XE "Execute "�property is set to TRUE and there is no text in the Text �XE "Text "�property to parse.

�XE "ENoText"�EInvalidVariable
Raised when an attempt is made to define an invalid variable.

�XE "EInvalidVariable"�ENotExecuting
Raised when an attempt is made to call the NextToken �XE "NextToken "�method when the Execute �XE "Execute "�property is set to FALSE.

�XE "ENotExecuting"�EInvalidLine
Raised when an attempt is made to set the CurrentLine �XE "CurrentLine "�or CurrentIndex �XE "CurrentIndex "�properties to invalid values.
�Event Handler Reference

Event Types

TCancelEvent
�XE "TCancelEvent"�Procedure(var Cancel: Boolean) of Object;

TErrorEvent
�XE "TErrorEvent"�Procedure(ErrCode : Integer) of Object;

TNewLineEvent
�XE "TNewLineEvent"�Procedure(LineNo : Integer; var Cancel : Boolean) of Object;

TLineEvent
�XE "TLineEvent"�Procedure(LineNo : Integer) of Object;

TNumExprEvent
�XE "TNumExprEvent"�Procedure(var Results : String; vType : Integer;
 var Break : Boolean; var Cancel : Boolean) of Object;

TStrExprEvent
�XE "TStrExprEvent"�Procedure(var Results : String; var Break : Boolean;
 var Cancel : Boolean) of Object;

�Parsing Events

OnAlphaParse
�XE "OnAlphaParse "�Declaration
Property OnAlphaParse : TCancelEvent;
�XE "TCancelEvent"�Procedure(var Cancel: Boolean) of Object;

Description
Set Cancel to TRUE and exit the handler if you want to terminate execution of the script.
THIS EVENT IS TRIGGERED ONLY WHILE THE AlphaParse PROPERTY IS SET TO TRUE.

Once the Execute �XE "Execute "�property has been set to TRUE, the parsing engine will parse the first token, then call this event. If Cancel is not set to TRUE when this handler is exited, the parser will continue by parsing the next token.

Important Note:
This event is never triggered when NextParse�XE "NextParse"�, Evaluate�XE "Evaluate"�, EvalString �XE "EvalString "�or EvalNumeric �XE "EvalNumeric "�methods are called.
This is the main work horse event for the parser. Generally it is a good idea to write the token handler in this routine. See TInterp.ScriptAlphaParse�XE "TInterp.ScriptNextParse"� in the sample application for a complete example.

OnNextParse
�XE "OnNextParse "�Declaration
Property OnNextParse : TCancelEvent;
�XE "TCancelEvent"�Procedure(var Cancel: Boolean) of Object;

Description
Set Cancel to TRUE and exit the handler if you want to terminate execution of the script.

THIS EVENT IS TRIGGERED ONLY WHILE THE AlphaParse PROPERTY IS SET TO FALSE.

Once the Execute �XE "Execute "�property has been set to TRUE, the parsing engine will parse the first token, then call this event. If Cancel is not set to TRUE when this handler is exited, the parser will continue by parsing the next token.

Important Note:
This event is never triggered when NextParse�XE "NextParse"�, Evaluate�XE "Evaluate"�, EvalString �XE "EvalString "�or EvalNumeric �XE "EvalNumeric "�methods are called.
This is the main work horse event for the parser. Generally it is a good idea to write the token handler in this routine. See TInterp.ScriptNextParse�XE "TInterp.ScriptNextParse"� in the sample application for a complete example.

�OnProcedure (not yet implemented)
�XE "OnProcedure "�Declaration
Property OnProcedure : TCancelEvent;
�XE "TCancelEvent"�Procedure(var Cancel: Boolean) of Object;

Description
Not implemented.

But when it is implemented, this event will be triggered when a variable (symbol) of type VPROCEDURE is encountered.

OnTypedVar
�XE "OnTypedVar "�Declaration
Property OnTypedVar : TCancelEvent;
�XE "TCancelEvent"�Procedure(var Cancel: Boolean) of Object;

Description
Set Cancel to TRUE and exit the handler if you want to terminate execution of the script.

This event handler is triggered whenever a variable token is encountered. It's main purpose is to simplify the evaluation of statements like Name = 'Greg'.

Important Note:
This event is called after the OnNextParse �XE "OnNextParse "�event is called. If your program uses the OnTypedVar event, then ignore NT_VARIABLE_FOUND�XE "NT_VARIABLE_FOUND"� tokens in the OnNextParse event. See the TInterp.ScriptNextParse�XE "TInterp.ScriptNextParse"� event handler in the sample application for a good example.

�Error Events

OnBadToken
�XE "OnBadToken "�Declaration
Property OnBadToken : TCancelEvent;
�XE "TCancelEvent"�Procedure(var Cancel: Boolean) of Object;

Description
This event is triggered after the OnNextParse event is triggered if the Token property contains an unrecognized token. This event seems to me to be redundant and I may decide to remove it or change it's function in the future.

OnError
�XE "OnError "�Declaration
Property OnError : TErrorEvent;
�XE "TErrorEvent"�Procedure(ErrCode : Integer) of Object;

Description
This event is called whenever a reportable parsing engine error occurs. The ErrCode argument contains an error code whose context is completely dependent on what caused the error. This event was included to provide for automatic error logging.

Important Note:
If the Exceptions �XE "Exceptions "�property is set to true, the parser will raise an exception before entering this event. It is possible that the exception could cause the program to terminate before this event is called.

�Text Events

OnEndOfLine
�XE "OnEndOfLine "�Declaration
Property OnEndOfLine : TLineEvent;
�XE "TLineEvent"�Procedure(LineNo : Integer) of Object;

Description
This event is called whenever an end of line is encountered. May be used to display a progress message. When this event occurs, the line is finished.

Important Note:
Not all end-of-lines will trigger this event. Direct calls to some methods may parse past the end of a line without calling this event.

OnEndOfText
�XE "OnEndOfText "�Declaration
Property OnEndOfText : TLineEvent;
�XE "TLineEvent"�Procedure(LineNo : Integer) of Object;

Description
This event is called when the end of text is encountered. You can be sure of one thing ... when this event is called the script is done.

OnNewLine
�XE "OnNewLine "�Declaration
Property OnNewLine : TNewLineEvent;
�XE "TNewLineEvent"�Procedure(LineNo : Integer; var Cancel : Boolean) of Object;

Description
This event handler is called whenever the parser encounters a new line. If you set the Cancel variable to TRUE, the parser will terminate execution of the script.

�Expression Evaluation Events

OnEnterStrExpr
�XE "OnEnterStrExpr "�Declaration
Property OnEnterStrExpr : TStrExprEvent;
�XE "TStrExprEvent"�Procedure(var Results : String; var Break : Boolean;
 var Cancel : Boolean) of Object;

Description
This event is called BEFORE the EvalString �XE "EvalString "�method begins evaluating the string. There may be cases where you want to completely short-circuit the string evaluator with a custom one of your own. If this is the case, remember to use the Break variable to cause the parser to break out of the EvalString method. The following variables are passed to the event:

Table � SEQ Table * ARABIC �11� - OnEnterStrExpr Passed Arguments
�TYPE�FUNCTION��Results�String�Store the results of your custom function as a string in this variable. The evaluator will include it.��Break�Boolean�If the custom function you are implementing is not expected to be used as an element of a complex expression (such as InputBox, etc.) then set this variable to TRUE after processing the function. It instructs the parser that it should break the expression now. Although this is not an error condition, it may cause an error for the user who tries to include this function in a complex expression.��Cancel�Boolean�If you have detected an error in the syntax, etc. of your custom function, then set this variable to TRUE to tell the parser to give up.��

OnNumExprLoop (Formerly OnEnterNumExpr)
Note: This event was originally improperly named OnEnterNumExpr.
�XE "OnEnterNumExpr "�Declaration
Property OnNumExprLoop : TNumExprEvent;
�XE "TNumExprEvent"�Procedure(var Results : String; vType : Integer;
 var Break : Boolean; var Cancel : Boolean) of Object;

Description
Whenever the EvalNumeric �XE "EvalNumeric "�method is called and a registered numeric function token is encountered, the parser will trigger this event. It's purpose is to allow the programmer the opportunity to evaluate special numeric functions. To help in that regard, the following parameters are passed to the event:

Table � SEQ Table * ARABIC �12� - OnNumExprLoop Passed Arguments
�TYPE�FUNCTION��Results�String�Store the results of your custom function as a string in this variable. The evaluator will include it.��vType�Integer�The variable type expected - either VINTEGER �XE "VINTEGER "�or VFLOAT�XE "VFLOAT"���Break�Boolean�If the custom function you are implementing is not expected to be used as an element of complex expression (such as InputBox, etc.) then set this variable to TRUE after processing the function. It instructs the parser that it should break the expression now. Although this is not an error condition, it may cause an error for the user who tries to include this function in a complex expression.��Cancel�Boolean�If you have detected an error in the syntax, etc. of your custom function, then set this variable to TRUE to tell the parser to give up.��
See TInterp.ScriptOnEnterNumExpr in the sample application for a good example.
See RegisterNumeric �XE "RegisterNumeric "��XE "RegisterFunction "�method.

OnStrExprLoop
�XE "OnStrExprLoop "�Declaration
Property OnStrExprLoop : TStrExprEvent;
�XE "TStrExprEvent"�Procedure(var Results : String; var Break : Boolean;
 var Cancel : Boolean) of Object;

Description
Whenever the EvalString �XE "EvalString "�method is called and a registered string function token is encountered, the parser will trigger this event. It's purpose is to allow the programmer the opportunity to evaluate custom string functions. To help in that regard, the following variables are passed to the event:

Table � SEQ Table * ARABIC �13� - OnStrExprLoop Passed Arguments
�TYPE�FUNCTION��Results�String�Store the results of your custom function as a string in this variable. The evaluator will include it.��Break�Boolean�If the custom function you are implementing is not expected to be used as an element of a complex expression (such as InputBox, etc.) then set this variable to TRUE after processing the function. It instructs the parser that it should break the expression now. Although this is not an error condition, it may cause an error for the user who tries to include this function in a complex expression.��Cancel�Boolean�If you have detected an error in the syntax, etc. of your custom function, then set this variable to TRUE to tell the parser to give up.��
See TInterp.ScriptOnStrExprLoop in the sample application for a good example.
See RegisterFunction �XE "RegisterFunction "�method.

�Method Reference

Token/Keyword Parsing Methods

This is a collection of methods specific to Keyword �XE "Keyword "�and Token �XE "Token "�parsing. Although TScriptParser �XE "TScriptParser "�performs token parsing automatically, it is best to expect the parser to detect the tokens for statement keywords, then write routines to parse the syntax of the statement. The following set of methods are exported from BPOSSAPI.DLL�XE "BPOSSAPI.DLL"�'s parsing engine.

IsKeyword�XE "IsKeyword"�
Syntax:
Function IsKeyword(kw : String) : Boolean;

Description:
Returns TRUE if the current Keyword matches the keyword string passed in kw.

IsToken�XE "IsToken"�
Syntax:
Function IsToken(tkn : Integer) : Boolean;

Description:
Returns TRUE if the current Token �XE "Token "�property matches the token passed in tkn.

LocateKeyword�XE "LocateKeyword"�
Syntax
Function LocateKeyword(var LineNo, Index : Integer) : Boolean;

Description
Returns TRUE if the current keyword was located on the current line. This function returns the line number and the character index location of the keyword.

The purpose of this function is to help the programmer write code to locate the source of an error and highlight it on the user's screen. I could also be used to back up the parser to the beginning of a statement.

LocateTextAt
�XE "LocateTextAt"�Syntax
Function LocateTextAt(Line : Integer; Index : Integer) : Word;

Description
Given a line number and a character index, this function will return the linear location of the character in the text.

NextToken
�XE "NextToken"�Syntax
Procedure NextToken;

Description
This procedure instructs the parsing engine to parse to the next token. Token�XE "Token"�, Keyword�XE "Keyword"�, CurrentLine�XE "CurrentLine"�, CurrentIndex �XE "CurrentIndex "�and associated properties are updated.

Note: This procedure will not trigger parsing events.

ParseWhileIn
�XE "ParseWhileIn"�Syntax
Function ParseWhileIn(const cset : Array of Integer) : String;

Description
This function is used to parse the text while encountering tokens that match the set of tokens passed in the array cset. It returns the complete text (white space included) until a token is found that is not contained in the set.

TextString := ParseWhileIn([NT_STRING_CONSTANT, NT_PLUS]);

The above example would parse the text containing string constants and '+' characters. ParseWhileIn would return a null string if it encounters any other token.

PeekNextToken
�XE "PeekNextToken"�Syntax
Function PeekNextToken(var tkn : Integer; var kw : String);

Description
This function returns in tkn and kw the next token and keyword encountered in the text. No properties are effected by this call.

TokenInSetOf
�XE "TokenInSetOf"�Syntax
Function TokenInSetOf(tkn : Integer; const cset : Array of Integer) : Boolean;

Description
Returns TRUE if the current Token property matches a token in the array cset.
�Numeric and String Evaluation Methods

Evaluate
�XE "Evaluate"�Syntax
Function Evaluate(expr : String; var Success : Integer) : String;

Description
Evaluates the numeric expression in expr and returns the result as a string. The Success variable will contain 0 if successful, otherwise an error code.

EvalNumeric
�XE "EvalNumeric"�Syntax
Function EvalNumeric(var Results : String; vtype : Integer) : Boolean;

Description
Starting with the current keyword and text location, this function will parse and evaluate a numeric expression. The function will return TRUE if a numeric expression was found. It will return FALSE if a numeric expression either was not encountered, or if an evaluation error occured.

Results will return a string containing the result of the expression, or the error description if unsuccessful. vtype contains the type of expression (VINTEGER �XE "VINTEGER "�or VFLOAT�XE "VFLOAT"�).

EvalString
�XE "EvalString"�Syntax
Function EvalString(var Results : String) : Boolean;

Description
Starting with the current keyword and text location, this function will parse and evaluate a string expression. The function will return TRUE if a string expression was found. It will return FALSE if a string expression either was not encountered, or if an evaluation error occured.

Results will return a string containing the result of the expression.

TestNumExpr
�XE "TestNumExpr"�Syntax
Function TestNumExpr(left, op, right : String; var Success : Boolean) : Boolean;

Description
This function returns true if the relational expression defined by <left> <op> <right> is true. This is a primitive function that may not meet the needs of some expressions. See the TestRelation �XE "TestRelation "�sample method in the TScrDemo �XE "TScrDemo "�application source code for a better implementation.
�Variable Related Methods

This set of methods relate to the definition and manipulation of variables.

AddVariable
�XE "AddVariable"�Syntax
Function AddVariable(vname : String; vtype : Integer; vdata : String) : Integer;

Description
Adds a new variable (or symbol) to the symbol table. All data in the symbol table is handled as strings. Pass the name of the variable in vname, the variable's data type in vtype, and a string representation of the data in vdata. The variable type constants list is reprinted below. Select the data type desired from the list and pass it in vtype.

i.e. AddVariable('TRUE', VINTEGER, '-1'); will create a variable called 'TRUE' and assign it (as a longint) the value -1.

Table � SEQ Table * ARABIC �14� - AddVariable Constants
CONSTANT�VALUE�DESCRIPTION���XE "VNONE"�VNONE�0�Undefined.���XE "VSTRING"�VSTRING�1�A 0..255 character string.���XE "VINTEGER"��XE "VINTEGER"�VINTEGER�2�A Long Integer value.���XE "VFLOAT"�VFLOAT�3�An Extended decimal value.���XE "VPROCEDURE"�VPROCEDURE�4�A Procedure.���XE "VFUNCTION"�VFUNCTION�5�A Function.���XE "VLABEL"�VLABEL�6�A Label.��
GetVariable
�XE "GetVariable"�Syntax
Function GetVariable(varname : String; var vartype : Integer) : String;

Description
Returns the stored value of the variable (passed in varname) as a string. Returns the variable type in vartype if successful, otherwise returns -1.

PeekVariable
�XE "PeekVariable"�Syntax
Function PeekVariable(idx : Word; Var vtype : Integer) : String;

Description
The symbol table database can be investigated with this function. By passing an index value (0 to number of variables - 1) in idx PeekVariable will return the name of the variable stored in that symbol table record and return the variable type in vtype.

{ create a list of all known variables }

for idx := 0 to VariableCount-1 do begin
 vname := PeekVariable(idx, vtype);
 Text1.Add(vname + ' as type #' + IntToStr(vtype));
end;

SetVariable
�XE "SetVariable"�Syntax
Function SetVariable(vname : String; vdata : String) : Integer;

Description
Sets an existing variable's stored value. Returns 0 if successful, otherwise returns the error code. See AKW_* error code constants.

Note that it is important that the data passed in vdata is compatible with the data type of the variable. It is a good idea to use GetVariable �XE "GetVariable "�to determine it's type before attempting to set a variable.

VariableCount
�XE "VariableCount"�Syntax
Function VariableCount : Integer;

Description
Returns the number of defined variables. A maximum of 32,767 variables can be defined.

Note: BPOSSAPI.DLL�XE "BPOSSAPI.DLL"� will only maintain up to 128 string variables. Numeric variables are limited only by memory up to 32,767.

ZapVariables
�XE "ZapVariables"�Syntax
Procedure ZapVariables;

Description
Clears ALL variables from the symbol table.

It is very important to remember to ZapVariables (and, if required, add standard variables used in your interpreter) each time your program starts the interpreter.
�Keyword Definition Methods

AddKeyword
�XE "AddKeyword"�Syntax
Function AddKeyword(kw : String) : Integer;

Description
Adds a new keyword to the keyword database. Up to 256 keywords can be defined. Returns the token assigned to this keyword. Keywords are assigned tokens starting from 100 up to 355. Token values from 100 to 4095 are reserved for future versions of TScriptParser.

Important Note:

In general, it is a good idea to add your keywords to the Keywords �XE "Keywords "�TString property using the TString.Add�XE "TString.Add"� method before executing the script. TScriptParser �XE "TScriptParser "�automatically defines any keywords located in the Keywords property when the Execute property is set to TRUE.

The AddKeyword function is provided to allow the programmer to implement a language that may need to define special tokens while the script is executing. These tokens can be used for just about anything.

Avoid using this function unless you need your program to define keywords while executing a script.

GetKeyword
�XE "GetKeyword"�Syntax
Function GetKeyword(idx : Integer) : String;

Description
Returns a keyword from the keyword database record indexed by idx. As with PeekVariable, this function can be used to obtain a list of all defined keywords.

GetKeywordToken
�XE "GetKeywordToken"�Syntax
Function GetKeywordToken(kw : String) : Integer;

Description
Returns the token assigned to the keyword passed in kw. If the keyword is not found, then -1 is returned.

GetTokenKeyword
�XE "GetTokenKeyword"�Syntax
Function GetTokenKeyword(token : Integer) : String;

Description
Returns the keyword string assigned to the token passed in tkn. Returns a null string if the token is not assigned.

�KeywordCount
�XE "KeywordCount"�Syntax
Function KeywordCount : Integer;

Description
Returns the number of keywords stored in the keyword database.

LoadKeywords
�XE "LoadKeywords"�Syntax
Function LoadKeywords(Filename : String) : Integer;

Description
Loads a previously saved file of keywords. Returns DOS error level if unsuccessful.

The file must have been saved with SaveKeywords.

NT_CodeString
�XE "NT_CodeString"�Syntax
Function NT_CodeString(token : Integer) : String;

Description
A token related function used to return a context-class statement based on the value of the integer token provided.

Returns a context statement describing the class of token represented by the value of token.

This function is provided for the programmer for debugging purposes. It returns a short statement that describes the class of the token based on the NT_* result codes.

SaveKeywords
�XE "SaveKeywords"�Syntax
Function SaveKeywords(Filename : String) : Integer;

Description
Saves the current keyword database to the filename. Returns 0 if successful or an error code if not.

ZapKeywords
�XE "ZapKeywords"�Syntax
Procedure ZapKeywords;

Description
Clears ALL keyword definitions from the keyword database.

�Special Utility Methods

DefTokenDelims
�XE "DefTokenDelims"�Syntax
Function DefTokenDelims : String;

Description
Returns a string containing all default tokens in the order they are defined.

NT_Operators
�XE "NT_Operators"�Syntax
Function NT_Operators : String;

Description
Returns a string containing all special operators in the order they are defined.

�Label Methods

This section defines the methods used to maintain and use labels in the script. It is not necessary for the programmer to use this method of line labeling, but it's easy. Labels are defined as identifiers (up to 16 characters long) followed by a colon ':' character. They are probably best implemented on a single line, but that is not necessary.

AddLabel
�XE "AddLabel"�Syntax
Function AddLabel(lbname : String) : Boolean;

Description
Add a new label to the symbol database. The CurrentLine �XE "CurrentLine "�and CurrentIndex �XE "CurrentIndex "�properties are used to determine the location of the label. Labels are stored as type VLABEL�XE "VLABEL"�. They are stored as a long integer made up of 2 words.

Returns FALSE if the label can not be created.

GotoLabel
�XE "GotoLabel"�Syntax
Function GotoLabel(lbname : String) : Boolean;

Description
Continues execution of the script (resets the parser) at the line and character index following the label passed in lbname. Returns FALSE if the label does not exist.

ScanForLabels
�XE "ScanForLabels"�Syntax
Procedure ScanForLabels;

Description
Scans the entire contents of TScriptParser.Text �XE "Text "�property for labels. Any located labels are added to the symbol table.

It is important to remember to do this each time the script is executed.

i.e.:
ZapVariables�XE "ZapVariables"�;
ScanForLabels;

�String and Numeric Function Registration Methods

This section covers the function registration methods.

Function registration methods define function tokens that should be processed by OnEnterStrExpr, OnStrExprLoop and OnEnterNumExpr events. When a function is registered, it is placed in the expression evaluator's special function queue. When a registered function's token is encountered, the expression evaluator will trigger the appropriate OnEnter* or OnLoop* event. The programmer can then add the code in the event handler to evaluate and return the result to the parsing engine.

For an extensive example, see the TScrDemo �XE "TScrDemo "�application OnEnterStrExpr, OnStrExprLoop and OnEnterNumExpr �XE "OnEnterNumExpr "�events.

RegisterFunction
�XE "RegisterFunction"�Syntax
Procedure RegisterFunction(tkn : Integer);

Description
Registers a token to be evaluated as a string expression. The token passed in tkn must exist.

Remember, numeric expressions can, in some language implementations, be concidered as strings. The sample application TScrDemo does exactly that, in some cases. By doing so, few or no type casting operators are required.

Tokens registered using this procedure will be passed to the OnEnterStrExpr �XE "OnEnterStrExpr "�or OnStrExprLoop �XE "OnLoopStrExpr "�event handler.

RegisterNumeric
�XE "RegisterNumeric"�Syntax
Procedure RegisterNumeric(tkn : Integer);

Description
Registers a token to be evaluated as a numeric expression. The token passed in tkn must exist.

Tokens registered using this procedure will be passed on to the OnEnterNumExpr event handler.
�Copyright Information� XE "Copyright Information" �

Your use of DCossAPI.DCU and BPossAPI.DLL indicates your acceptance of the following terms and conditions:

DCossAPI.DCU ("the Component") is a Windows/Delphi DCU licensed by Greg L. Truesdell ("GLT").

Shareware license.

You are free to distribute the entire unmodified contents of the distribution package to anyone you wish. You may NOT distribute any other programs that utilizes the Component without obtaining a Registered User License for the Component from GLT. For a period of no more than 30 days, you may use, test and duplicate the enclosed version of the Component. Thereafter if you wish to continue using the Component you must register the Component with GLT, or else you must cease all use of the Component. You will be an infringer if you do not pay the registration fee and continue to use this version of the Component for more than 30 days.

Registered User License.

If you pay the registration fee for the Component to GLT, GLT will grant a non-exclusive development license for one natural person to use one copy of the software regardless if the owner of the license is a person or a business ("the Licensee"). In addition the Licensee may distribute the DCossAPI.DCU ("the DCU") with any or all products that use the DCU with the exceptions that (a) the recipients of any such program ("the Recipients") are not licensed to use the DCU or the Component except with the products produced by Licensees, and (b) the Recipients may not further redistribute the DCU, and (c) the product using the DCU cannot enable the user to produce other programs using the DCU or other parts of the supplied distribution package. No purported transfer of the license shall be effective until the licensee notifies GLT of the name and address of the person receiving the license ("the Transferee"), and transfers all copies of the Component to the Transferee, and removes or destroys any other copies of the Component in the possession of, or under the control of the Licensee.

Disclaimer of Warranties.

GLT makes no claims as to the suitability of the Component for any specific purpose. GLT DISCLAIMS ANY AND ALL WARRANTIES EXPRESS OR IMPLIED, WRITTEN OR ORAL, INCLUDING ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY SPECIFIC PURPOSE. The 30 day evaluation period is considered liberal enough for you to determine the fitness of this product to your application.

Limitation of Liability.

In no event shall GLT be liable for any damages whatsoever arising out of the use of the Component, including without limitation any direct, indirect or consequential damages or any damages for business interruption, loss of profits, loss of information, or any pecuniary loss even if GLT has been notified of the possibility of such damages. The limitation or exclusion of liability for incidental or consequential damages may not be allowed in some states, and in these states those particular prohibited limitations do not apply.
�Copyright Information

The Component is protected by the copyright laws of Canada and the United States, and by the copyright laws of many other countries pursuant to international treaties. The DCU and all other materials provided in the distribution package are Copyright (c) 1995 by Greg Truesdell. All Rights reserved. No portion of the Component, documentation or examples may be copied, stored, or transmitted except as provided by the license.

Other brand and product names are trademarks or registered trademarks of their respective holders.�Index
� INDEX \h "A" \c "2" ��A
AddKeyword, 30
AddLabel, 33
AddVariable, 28
AKW_DUPLICATE_KEYWORD, 14
AKW_INVALID_CHAR, 14
AKW_INVALID_TOKEN, 14
AKW_KEYWORD_TOO_LONG, 14
AKW_NO_MORE_ROOM, 14
AKW_OVERFLOW, 14
AKW_TYPE_MISMATCH, 14
AsFloat, 11
AsInteger, 11
AsString, 11
AsVarType, 11
B
BPOSSAPI.DLL, 25, 29
C
Copyright Information, 35
CurrentIndex, 9, 17, 25, 33
CurrentLine, 9, 17, 25, 33
D
DCOSSAPI, 6
DefTokenDelims, 32
E
EInvalidToken, 17
EInvalidVariable, 17
ENoKeywords, 17
ENotExecuting, 17
ENoText, 17
EvalNumeric, 19, 23, 27
EvalString, 19, 23, 24, 27
Evaluate, 19, 27
Events, 11
Exceptions, 9, 21
Execute, 9, 17, 19
EXPR_COMMA_MISSING, 15
EXPR_EXPECTED_EXPRESSION, 15
EXPR_EXPECTED_FACTOR, 15
EXPR_EXPECTED_TERM, 15
EXPR_EXTERNAL_CALL, 15
EXPR_GARBAGE_FOLLOWS, 15
EXPR_INVALID_IDENTIFIER, 15
EXPR_INVALID_PARAMETER, 15
EXPR_INVALID_VAR_OR_FUNC, 15
EXPR_MISSING_RPAREN, 15
EXPR_OUT_OF_MEMORY, 15
EXPR_OVERFLOW, 15
EXPR_PARAMETER_COUNT_ERROR, 15
EXPR_PARAMETER_MISSING, 15
EXPR_PARAMETERS_NOT_ALLOWED, 15
EXPR_SYNTAX_ERROR, 15
EXPR_TYPE_MISMATCH, 15
EXPR_VARIABLE_EQUATE_ERROR, 15
EXPR_ZERO_DIVIDE, 15
G
GetKeyword, 30
GetKeywordToken, 30
GetTokenKeyword, 30
GetVariable, 28, 29
GotoLabel, 33
I
IsKeyword, 25
IsToken, 25
K
KeyWord, 9, 25
KeywordCount, 31
Keywords, 9, 30
L
LineText, 11
LoadKeywords, 31
LocateKeyword, 25
LocateTextAt, 25
M
MAX_KEYWORD_LEN, 14
MAX_KEYWORDS, 14
MAX_SCRIPTS, 14
MAX_VARIABLES, 14
Methods, 13
N
Name, 9
NextParse, 19
NextToken, 17, 25
NT_AMPERSAND, 16
NT_AT, 16
NT_CARET, 16
NT_CodeString, 31
NT_COLON, 16
NT_COMMA, 16
NT_DBL_QUOTE, 16
NT_DIVIDE, 16
NT_DOLLAR, 16
NT_EQUAL, 16
NT_EXCLAMATION, 16
NT_FUNCTION, 15
NT_GREATERTHAN, 16
NT_LABEL_FOUND, 15
NT_LEFTBRACE, 16
NT_LEFTBRACKET, 16
NT_LEFTPAREN, 16
NT_LESSTHAN, 16
NT_MATH_FUNCTION, 15
NT_MINUS, 16
NT_NO_FREE_MEMORY, 15
NT_NO_KEYWORDS, 15
NT_NUMERIC_CONSTANT, 15
NT_Operators, 32
NT_PAST_EOF, 15
NT_PERCENT, 16
NT_PLUS, 16
NT_POUND, 16
NT_PROCEDURE, 15
NT_RIGHTBRACE, 16
NT_RIGHTBRACKET, 16
NT_RIGHTPAREN, 16
NT_SEMICOLON, 16
NT_SNG_QUOTE, 16
NT_STRING_CONSTANT, 15
NT_TIMES, 16
NT_TOKEN_NOTFOUND, 15
NT_VARIABLE_FOUND, 15, 20
O
OnAlphaParse, 19
OnBadToken, 12, 21
OnEndOfLine, 12, 22
OnEndOfText, 12, 22
OnEnterNumExpr, 12, 23, 34
OnEnterStrExpr, 12, 23, 34
OnError, 12, 21
OnLoopStrExpr, 34
OnNewLine, 12, 22
OnNextParse, 12, 19, 20
OnProcedure, 12, 20
OnStrExprLoop, 12, 24
OnTypedVar, 12, 20
Options|Install Components, 8
P
ParseWhileIn, 26
PeekNextToken, 26
PeekVariable, 28
PKUNZIP, 8
Properties, 9
R
RegisterFunction, 12, 24, 34
RegisterNumeric, 12, 24, 34
S
SaveKeywords, 31
ScanForLabels, 33
SetVariable, 29
T
Tag, 10
TCancelEvent, 18, 19, 20, 21
TErrorEvent, 18, 21
TestNumExpr, 27
TestRelation, 27
Text, 10, 17, 33
TInterp.ScriptNextParse, 19, 20
TLineEvent, 18, 22
TNewLineEvent, 18, 22
TNumExprEvent, 18, 23
Token, 10, 25
TokenInSetOf, 26
TScrDemo, 27, 34
TScriptParser, 6, 25, 30
TStrExprEvent, 18, 23, 24
TString.Add, 30
V
VariableCount, 29
VBOSSAPI, 6
VFLOAT, 16, 23, 27, 28
VFUNCTION, 16, 28
VINTEGER, 16, 23, 27, 28
VLABEL, 16, 28, 33
VNONE, 16, 28
VPROCEDURE, 16, 28
VSTRING, 16, 28
Z
ZapKeywords, 31
ZapVariables, 29, 33
��

�Visual Basic is a product of Microsoft.

