Classic Component Set
 -
Frequently Asked Questions

Last updated:
8 May
,
19
9
8

Contents

1. How can I achieve the same two color scheme
(selected and unselected tab colors) as
used in TcsNotebook in a TcsTa
bControl/TcsTabControl16
?

2. How can I achieve the same two color schem
e

as
used in TcsNotebook in a TcsPageControl?

3. How
can
 I use the same
custom
background
for all tabs and pages of a TcsPageControl?

4. How
can
I

add a new tab
t
o a
TcsTabControl
 at run-time
?

5. How
can

I

add a new tab
to a TcsTabControl16
 at run-time
?

6. How
can

I

add a new page to a TcsPageControl
 at run-time
?

7. How can
I
 change
a
 TPageControl
in
an existing form
to
a TcsPageControl?

8. How can
I
 make the border disappear?

�
1. How can I achieve the same two color scheme
(selected and unselected tab colors) as
used in TcsNotebook in a TcsTa
bControl/TcsTabControl16
?

The easiest way to do this is to add
code to the OnChange and OnChanging event handlers. The example below uses clYellow as the color for the current tab and clBtnFace for all other tabs. If you want this sort of behaviour for all the tab/page controls you use then you should
derive a descendant component and override the Change and Changing methods.

procedure TForm1.csTabControl1Change(Sender: TObject);
begin
 if csTabControl1.TabIndex >= 0 then
 csTabControl1.Tabs[csTabControl1.TabIndex].Color := clYellow;
end;

procedure TForm1.csTabControl1Changing(Sender: TObject;
 NewIndex: Integer; var AllowChange: Boolean);
begin
 if csTabControl1.TabIndex >= 0 then
 csTabControl1.Tabs[csTabControl1.TabIndex].Color := clBtnFace;
end;

�
2. How can I achieve the same two color schem
e

as
used in TcsNotebook in a TcsPageControl?

The easiest way to do this is to add the following code to the OnChange and OnChanging event handlers of the control:

procedure TForm1.csPageControl1Changing(Sender: TObject;
 NewIndex: Integer; var AllowChange: Boolean);
begin
 if csPageControl1.ActivePage <> nil then
 csPageControl1.ActivePage.Color := clBtnFace;
end;

procedure TForm1.csPageControl1Change(Sender: TObject);
begin
 if csPageControl1.ActivePage <> nil then
 csPageControl1.ActivePage.Color := clYellow;
end;

�
3. How
can
 I use the same
custom
background
for all tabs and pages of a TcsPageControl?

The following instructions outline the steps you can use to have the same (custom) background bitmap for all tabs and pages of a TcsPageControl. Since each page is actually a separate component (TcsTabSheet) and has its own OnPaintBackground event,
you can use the same
(
single
)
OnPaintBackground
 handler for all the pages.

The example assumes you have a form containing a TcsPageControl called csPageControl1 with 3 tabs/pages and a TImage called Image1, which is used for your source bitmap.

You need to create OnPaintCardBackground and OnPaintTabBackground event handlers for the page control and an OnPaintBackground handler for the tabsheets. Create the handler for the first tabsheet and then just reselect it for subsequent tab sheets.

The only 'trickery' performed by the code below is that because TcsTabSheet components have their own OnPaintBackground event, the Rect for their paint event will always have an origin of 0,0 and will not be relative to their position within the page control. Their position 'within' the page control is calculated from the Left and Top values of the Sender, which is the tab sheet being painted, the location of the tab sheet within its parent -- the page control.

The OnPaintCardBackground handler fills in the small gap which is left between the current tab and the corresponding page (the page can't extend up into this gap because it is beyond its (rectangular) border -- this only applies for page controls and not tab controls because the page is actually 'on' the current card and doesn't occupy the whole of its surface).

A common procedure (PaintCustomBackground) is used to handle the actual bitmap copying for all the event handlers so that you don't have to duplicate the same code in each type of paint handler.

--
unit Unit1;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, CSPC, CSTCBase, ExtCtrls;

type
 TForm1 = class(TForm)
 Image1: TImage;
 csPageControl1: TcsPageControl;
 TabSheet1: TcsTabSheet;
 TabSheet2: TcsTabSheet;
 TabSheet3: TcsTabSheet;
 procedure TabSheet1PaintBackground(Sender: TObject; ACanvas: TCanvas;
 const ARect: TRect; var Handled: Boolean);
 procedure csPageControl1PaintTabBackground(Sender: TObject;
 ACanvas: TCanvas; ATabIndex: Integer; const ARect: TRect;
 var Handled: Boolean);
 procedure csPageControl1PaintCardBackground(Sender: TObject;
 ACanvas: TCanvas; ARow: Integer; const ARect: TRect;
 var Handled: Boolean);
 private
 { Private declarations }
 procedure PaintCustomBackground(ACanvas: TCanvas;
 const SrcRect, DstRect: TRect);
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

{ Common procedure for use to do the actual blit. }
procedure TForm1.PaintCustomBackground(ACanvas: TCanvas;
 const SrcRect, DstRect: TRect);
begin
 with ACanvas do
 begin
 CopyMode := cmSrcCopy;
 CopyRect(DstRect, Image1.Picture.Bitmap.Canvas, SrcRect);
 end;
end;

{ OnPaintBackground handler for all the tab sheets }
procedure TForm1.TabSheet1PaintBackground(Sender: TObject;
 ACanvas: TCanvas; const ARect: TRect; var Handled: Boolean);
var
 R: TRect;
begin
 { offset rect relative to position of tabsheet within page control }
 R := ARect;
 OffsetRect(R, (Sender as TcsTabSheet).Left, (Sender as TcsTabSheet).Top);
 PaintCustomBackground(ACanvas, R, ARect);
 Handled := True;
end;

{ OnPaintTabBackground handler for the page control }
procedure TForm1.csPageControl1PaintTabBackground(Sender: TObject;
 ACanvas: TCanvas; ATabIndex: Integer; const ARect: TRect;
 var Handled: Boolean);
begin
 PaintCustomBackground(ACanvas, ARect, ARect);
 Handled := True;
end;

{ OnPaintCardBackground handler for the page control }
procedure TForm1.csPageControl1PaintCardBackground(Sender: TObject;
 ACanvas: TCanvas; ARow: Integer; const ARect: TRect;
 var Handled: Boolean);
begin
 PaintCustomBackground(ACanvas, ARect, ARect);
 Handled := True;
end;

end.

�
4. How
can
I

add a new tab
t
o a
TcsTabControl
 at run-time
?

The following code shows how a new tab is added to a TcsTabControl
component
called TC
. The code may look like it is missing
a Create of the tab
, but this is not the case as
the tab is created by
the Tabs collection
’s Add method
:

var
 NewTab: TcsTabCollectionItem;
begin
 NewTab := TC.Tabs.Add; { create new tab collection item }
 NewTab.Caption := ‘New Tab’;
end;

�
5. How
can

I

add a new tab
to a TcsTabControl16
 at run-time
?

The following code shows how a new tab is added to a TcsTabControl16
component
called TC:

var
 NewTab: TcsTabComponent;
begin
 NewTab := TcsTabComponent.Create(Self); { create new tab component }
 NewTab.Caption := ‘New Tab’;
 TC.Tabs.Add(NewTab); { add the tab component to Tabs list }
end;

�
6. How
can

I

add a new page to a TcsPageControl
 at run-time
?

The following code shows how a new page is added to a TcsPageControl component called PC
 (this code is assumed to be in a method of a form
, i.e. Self is the form
)
:

var
 NewPage: TcsTabSheet;
begin
 NewPage :=
TcsTabSheet.Create(Self);

 NewPage.Caption :=
‘New Page
’;

 NewPage.PageControl
 := PC;

end;

�
7. How can
I
 change
a
 TPageControl
in
an existing form
to
a TcsPageControl?

You can do this by directly editing the f
orm
file
(
.
DFM)
and then the unit
file
(.PAS)
as follows:

S
ave a copy of the DFM
 and PAS files before beginning -- just in case!

Right click on the form and select View as Text.

Change the
name of the
TPageControl
(if desired)
, e.g. to csPageControl1
, ensuring that it is still unique.

Change the
type
of the
TPageControl to TcsPageControl.

Change the type of each tab sheet from TTabSheet to TcsTabSheet.

Right click on the form and select View as Form.

Switch to the unit
file and add the units CSPC and CSTCBase to the uses clause in the interface section.
 (You can remove
the
ComCtrls
unit from the uses clause
if TPageControl was the only component used from that unit
.
)

Change the name
of the page control
(if you did so
in step III above)
.
Change the
type
of the page control
to TcsPageControl.
Change the type of each tab sheet to TcsTabSheet.

Using the Object Inspector, change the TabStyle to tsTabControl.

Save the changes.

�
8. How can
I
 make the border disappear?

There is no current provision for having no border --
the closest you can get is to
set
 BevelWidth to 0,
the FrameBorderColor to the same color as the form (or whatever the color of the control on which the pagecontrol sits is) or a non-contrasting color if using
custom OnPaint* events
 and
TabStyle to tsTabSet or tsTabbedNotebook
.

<end>

